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1.0 INTRODUCTION

Ergodicity is the condition which enables time-averaged statistics of
random processes to approximate those obtained by ensemble averages. Although
this condition is often assumed in estimation and other signal processing
applications, the dependence of the ergodic behavior of random processes upon
fundamental process characteristics (such as the temporal and cross-channel
correlation, and the process variance) and its implications on estimation
performance evaluation is not often considered. The ergodicity condition for
auto- and cross-channel correlation functions expressed in terms of these
fundamental process characteristics is derived in this paper. Specifically, analytic
expressions are developed for the variance of the biased, time-averaged
correlation functions for stationary discrete complex processes. If these
var~ances approach zero in the limit of infinitely large sample sizes, the ergodic
condition holds. The expressions derived here pertain to the general case of
Gaussian processes with unconstrained quadrature components where the
bandpass processes are, in general, non-stationary [5]. In addition, the analytic
expressions are simplified for the special case of complex processes with
constrained correlation between the Gaussian quadrature components yielding
stationary narrowband bandpass processes.

The expressions developed here for the time-averaged correlation function
estimators provide a performance measure which can be used to specify the
window size of the observation interval required to achieve a specific value of
this variance. As an example, the increase in sample window size required to
achieve a specific value of the variance of the time-averaged correlation functions
is quantitatively related to the increase in temporal correlation as well as the
variance of the underlying process. Validity of the analytic expressions is
presented using a multichannel process synthesis method described in [1,2].

Next, Monte-Carlo simulations are used to measure the error variance of
several parameter estimators using zero-mean time series whose covariances are
functions of a parameter vector. Both Gaussian and non-Gaussian processes are
considered. In this analysis, the parameter vectors are varied to simulate
processes with various temporal and cross-channel correlation; ie., processes
ranging from narrowband to broadband. The dependence of the parameter
estimators upon process correlation is contrasted with that of the time averaged
correlation function estimators. It is noted that the performance of these two



classes of estimators have markedly different dependence on process temporal
correlation. Finally, the performance of the parameter estimators is compared to
the exact Cramer-Rao bound.
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2.0 PROCESS DEFINITION

In this chapter, we define the multichannel autoregressive (AR) process,
the relation between the AR coefficients and the correlation matrix of the
processes known as the Yule-Walker equation, a wide class of non-Gaussian
processes known as Spherically Invariant Random Processes (SIRP's); and finally,
a brief description of the procedure used to synthesize these processes enabling
the control of the temporal and cross-channel correlation.

2.1 MULTICHANNEL AUTOREGRESSIVE (AR) PROCESSES

The multichannel forward autoregressive (AR) process x_(n) is expressed as

M
x(n) =- - AH(k)x_(n-k) + u(n) (2.1)

k=1

where AH(k) is the kth JxJ matrix coefficient for the Jxl vector AR process x(n)
of model order M and u(n) is the Jxl forward white noise driving vector with
covariance matrix [Zflu. We note that AH(k) is expressed in terms of the

Hermitian operation for notational convenience, but is not restricted to be a
Hermitian matrix. It will be shown later that this notation enables us to express
the Yule-Walker equation in terms of row vectors containing the Hermitian
transpose operation. For the single channel case, the terms in eq(2. 1) are scalers.
Thus,

M
x(n) = - 1 a*(k)x(n-k) + u(n) (2.2)

k=1

The vector u(n) from eq(2.1) can be expressed as

u(n) = Cvv(n) (2.3)

where v(n) is a Jx 1 white noise vector with JxJ diagonal covariance matrix Dv.

Eq(2.3) enables us to obtain

3



[Y-flu =- E[u1(n)u1H(n)l = EICvv(n)vH(n)CHl (2.4a)

= CvE[y(n)vH(n)]CH (2.4b)

VCD vv (2.4c)

For the special case

Dv = E[y(n)vH(n)] = I (2.5)

where I is the JxJ identity matrix, eq(2.4c) reduces to
H

[Iflu = CvCv. (2.6)

Eq.(2.6) indicates that the JxJ matrix Cv can be obtained by the Cholesky

decomposition of [If]u- The above relationships are utilized in the process

synthesis procedure described in section 2.4 and reference [2]. Alternatively,
eq(2.3) could have been expressed as

u(n) = Lz(n) (2.7)

where Lz is a unit diagonal lower triangular matrix and the vector process z(n) is

a white noise vector uncorrelated in time, whose components are also
uncorrelated across channels. The covariance matrix of u(n) is expressed as

H

[Yflu - E[u(n)uH(n)] = E[Lzz(n)zH(n)Lz] (2.8a)
H

LzE[z(n)zH(n)]Lz (2.8b)
H

-LzDzLz (2.8c)

where
Dz = E[z(n)zH(n)]. (2.9)

Eq(2.8c) denotes the LDLH decomposition of [Iflu provided Dz is a real,

diagonal matrix. Furthermore, the channel variances are contained along the
diagonal elements of Dz.

4



2.2. THE YULE-WALKER EQUATIONS

In this subsection, we present the relationship between the matrix
coefficients AH(k) of eq(2.1), the covariance matrix [Eflu of the forward AR

white noise driving vector defined in eqs(2.4), and the known correlation matrix
[Rxx] of the vector x(n). The latter is defined as

[Rxx] = E[xnM~n(..-M,n)H]. (2.10)

where

xT = [xT(n-M) xT(n-M+1)...xTj(n)] (2.11)
=n-M,n

We first introduce the reversed order correlation matrix [RxxIM+l defined

as

[x.Rx = E[XnxM(Xnn-M)n] (2.12)

where

xT [xV(n) x_(n-1) ... x(n-M)] (2.13)
nn-M

and - denotes time order reversal. We note that the matrix [Rxx] is the

correlation matrix of n- = X in contrast to [Rxx] which is the correlation=n-M,n =n,n-M
matrix of the vector xn-M,n defined in eq(2.1 1).

The relationship between AH(k), [7-flu and [Pxx] is expressed by the

augmented Yule-Walker equations [9,10]; ie.,

AH [xx]= {[=fu1 1 [01.)0]) (2.14)

where
A H= [I AH(1) AH(2)...AH(M)] (2.15a)

]= E[u(n)u (n)] [Ef~u (2.15b)
uT(n) [ul(n) u2(n) ...uj(n)] (2.15c)

5



The corresponding equation for the wide-sense stationary, backward AR
process is expressed as

M
x(n) =-, BH(k)x(n+k) + U~b(n) (2.16)

k= 1

where we specifically denote the backward white noise driving vector ub(n) with
the subscript b. The covariance matrix of ub(n) is expressed as

H
[Xblu = E[U1b(n) u!b(n-I) (2.17)

The corresponding equation for the backward Yule-Walker equations are
expressed as

BH [K'xx] = {[01...[01 [1 bluh (2.18)

where
BH = [BH(M)...BH(1) I]. (2.19)

2.3 NON-GAUSSIAN AUTOREGRESSIVE PROCESSES

In this section, we discuss the generalization of the single channel
autoregressive processes defined in eq(2.2) to a class of non-Gaussian random
processes known as spherically invariant random processes (SIRP) [7,16,17,18].
The non-Gaussian form of the random process x(n) is introduced through the
white noise driving term u(n). Following Rangaswami [16], we first define a
spherically invariant random vector (SIRV) as a random vector (real or complex)
whose PDF is uniquely determined by the specification of a mean vector, a
covariance matrix and a characteristic first order PDF. A spherically invariant
random process (SIRP) is a random process (real or complex) such that every
random vector obtained by sampling this process is an SIRV. An important
theorem in the theory of such processes is the representation theorem [Yao] stated
as follows.

6



Theorem 1 If a random vector is an SIRV, then there exists a non-negative
random variable S such that the PDF of the random vector conditioned on S is a
multivariate Gaussian PDF.

For the simulation of an SIRV, we consider the product

UlN = ZI,NS (2.20)

where uLN = [u1 u2 ... UNIT denotes the SIRV, Z1,N = [Z1 Z2 ... ZN]T is a Gaussian

random vector with zero mean and covariance matrix M and S is a real, non-
negative random variable with characteristic PDF fs(s). Statistical independence

between zl,N and S is assumed for convenience. In [71, several characterisic
PDF's for fs(s) are considered which provide various PDF's for fu(u). Among

others, they include the Chi, Weibull, Generalized Rayleigh, Rician, the K-
distribution, Laplace, Cauchy, Student-t and, as a special case, the Gaussian. In
section 5.3.2, we consider K-distributed processes using a form of the Gamma
distribution for fs(s).

2.4 PROCESS SYNTHESIS PROCEDURE

In this section, we briefly describe the method used to synthesize the
random processes used in this study. The procedure utilizes the multichannel
Yule-Walker equation expessed by eq.(2.14). Essentially, the desired temporal

and cross-channel correlation are specified in the covariance matrix [Rxx],

eq(2.14) is solved for the vector of matrix coefficients An and the matrix [YXf]H.

The AH(k) coefficients contained in A H are used in eq(2.1) directly for the

desired order M of the process. The matrix [7f]H is used in eq(2.6) to determine
the matrix Cv. This matrix in turn is used in eq(2.3) to provide the white noise

driving term ju(n) in eq(2.1). We note that _u(n) provides the cross-channel
correlation through the Hermitian covariance matrix [1f¾u.

In [2], we describe a method to incorporate the desired correlation

properties into [R_.]. This is accomplished through the use of 'shaping functions'

which enable us to modify the shape of the correlation functions contained in the

correlation matrix. For the cross-correlation function, we consider

7



Rij(I) = (Pi )Giiiif(i'j' - lij) xpfj[0ij(1)-0ij(0)] 1 (2.2 la)
f(•'ij' - Iij)l =0
=- Ii) xpjj[ j(I)] (2.21b)

f(XijI - 'ij) 1,=0 [

where pij is the complex cross-channel correlation parameter such that
Pij =Rij(0)/oiiYj,9 ij is the one-lag temporal cross-correlation parameter, lij is the
lag value at which the cross-correlation function peaks and Oij(I) is the phase of

the cross-correlation function. By definition,

Pii= IPijj exp[j~ij(0)] (2.22)

Expressions for Rji(I) are obtained from eq(2.21b) using the property

*

Rji(I)=Rij (-1). (2.23)

These equations provide us with a useful description of the cross-
correlation function in terms of the complex cross-correlation coefficient pij, the
standard deviations aii and ;jj of the channel i and j processes, respectively, and
the one-lag temporal cross-correlation parameter, .ij- For the autocorrelation
function (i=j), we have IpjI=l since any given channel process is totally
correlated with itself at zero lag. Also, Oji(O) = 0 since Oji(I) is an odd function of

I. Since the function f(o) for the autocorrelation function has a peak value of unity
at 1=0 and noting that Iii = 0, eq(2.21b) for i=j reduces to

2Rii(I) = •2f(Xi,)expjji()} (2.24)

where kii is the one-lag temporal autocorrelation parameter and is a measure of
the correlation magnitude between consecutive samples such that 0<Xii_<l. At lag

value 1=0, eq.(2.24) becomes Rii(0) = ai2 which is, as expected, the variance of the

zero mean, channel i process.
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EXAMPLE Gaussian Shaped Correlation Functions

In [2], the special cases of Gaussian, exponential and sinc shaped correlation
functions are considered using the forms given in eqs(2.21b) and (2.24). For
cross-correlation functions with Gaussian shaped magnitudes, for example, we
use

f(xij, I - ii) = (Xij)(1-l) (2.25)

so that eq(2.21b) becomes

Ri(I) = Ip a.(Xj)( VIj)2 expjqj(I) (2.26)
(ij)1ij

For the autocorrelation function (i=j) with Gaussian shaped magnitudes, we
have (dropping the subscript i for notational convenience)

R(l) = 02 f(X,I)expUj(I)] = U2 (k) 2 expUO(I)] (2.27)

where

f(,,I) = () 12 = exp[- 27r20t2T 2 12] (2.28a)
and

X = exp[-27r2p.2T 2] (2.28b)

is a real constant such that 0 < X < 1 and T is the sample period. In ref [2], we
show that g2 is the variance (which determines the width) of the corresponding
Gaussian shaped spectra.

EXAMPLE Exponentially Shaped Correlation Functions

For the exponentially shaped cross-channel correlation function, we use the
expression
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Ri(I) = (Xij)lli 1 exp{jogj(I) } (2.29)

while the autocorrelation function becomes

2 IkI
Rii(k) = Yii (X•i) exp[jOii(I)]. (2.30)

In the above discussion, we have proposed the use of functional forms to
characterize the magnitude and phase of the correlation functions. The motivation
for this approach is that it will allow for flexibility in modeling random processes
with various correlation and spectral shape. We note, however that at this point
we have not constrained these functions to meet all the criteria that are necessary
and sufficient to characterize correlation functions. In fact, determining all of
these conditions in a general formulation is a difficult task. In [2], we note several
constraints for the correlation functions including the important condition of
positive semi-definiteness of the correlation matrix.
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3.0 VARIANCE OF THE TIME-AVERAGED CORRELATION
FUNCTIONS

3.1 VARIANCE OF THE AUTOCORRELATION FUNCTION ESTIMATOR

The ensemble correlation function is defined as the expectation of lagged
products of a given stationary process when averaged over an ensemble of
realizations. If this function is equal to the time-averaged correlation function
obtained from a single realization, the process is called auto- or cross-correlation
ergodic. Consider the time-averaged estimate of the biasedt correlation function
using NT observation time samples

N T-I-1
1 *

Sxi(n)xj(n-I) 0 <1 <NT-I
NT n=O

ijTb (I,NT) = -1 (3.1)
INT,-Il1-i

NT x0xi(n)xj(n-III) -(NT-I) <I < 0.•-Tn=0

The variance of the autocorrelation (j=i) estimator ,iiTb(I,NT) is expressed as

VB.i(I,NT) =

= E { [iTb (,NT) - E[f iiTb(I,NT) ][(iiTb(1,NT) - E[kiiTb(1,NT) (3.2a)

= E[tii (i,NT)(iiTb(i,NT)] - E[l.i (INT)E[kjijrb (I,N)]. (3.2b)
giTb( kiT b T) "iTbl T~" b T).2b)

We now consider each term within the expectation operations expressed in

eq(3.2b). Using eq(3.1) in the first term on the RHS of eq(3.2b), we have for

positive and negative I

I NT-I-1 NT-I-1
T  ,N 2 N I xi(n)xi(n-I)xi(p)xi(P-I)

NT n=0 p=0

t In this paper, we consider the biased estimator for the correlation functions since it ensures positive semi-definiteness. In

(2], the unbiased estimator is presented as well as an estimator with unlimited data.
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O•I•15NT-i (3.3a)

- -1- 2 xi(n)xj(n-Ill)xj(p)xi(p-llI)
NT n=O p=O

-(NT-l1)• •!ý150 (3.3b)

so that

1=A NT-1-i NT-I-i

E~t. (N T n=0 p=O
0O51I•NT -1 (3.4a)

=1NT-Ill-i NT-Ill-i1
SE[xi (n)xj(n-IlI)xj(p)xj (p-Ill)]

NT n=0 p=O

-(NT- 1)• •51 ý0 (3.4b)

For the second term in eq(3.2b), eqs.(3. 1) enable us to obtain

i NT-1- I
E ui~(I,NT)]= -~ I R11(I) 0:•I•ýNT - I (3.5a)

SNT-Ill-i1

NT R11(I) -(NT-1) < I 5 0. (3.5b)
n=O

so that

E[~i( ,NT)]E[ki * (1,NT)

= 2 1 NT I- NT I- jji~ 0 •51 •! NT (3.6a)
NT n=O p=O

SNT-Ill-i NT-Ill-i
W2 I~ lR 1()12  -(NT-i1) < I •! 0. (3.6b)

NT n0O p=O

Using eqs(3.4) and (3.6) in the expression

VBii(I,N)= [ii(I ,NT) ~(1,N]- E[A TbINT)IE[alTb(INT)] (3.7)
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we obtain

V(IN) = 1NT-I-i NT-I-i1
V~iNT, n, I= [Efxi(n)x* (n-I)xi*(p)xi(p-I) - IRii(I)I2 }

for OSI•!NT -1 (3.8a)

SNT-Ill-i NT-Ill-i R1(~2
-2 Y, Y, {Ejxix(n)xi(n-Ill)xi(p)xi(p-ll1I) - Ii()2

NT n0O p=O

for -(NT-1)•I•O:5 . (3.8b)
We now define

O(n,l) = xi(n)xi (n - 1) (3.9a)

and
ROO(k,l) = E[O(n,I)0*(n - kI)] (3.9b)

so that, assuming stationarity, the covariance of 4(n,i) can be expressed as

COO~(kI) =E[ f (n,I) - E[O(n,I)]}I f 0*(n-k,I) - E[O*(n-k,I)]} (3.1lOa)
=ROO(k,I) - E[O(n,I)]E[O*(n-k,I)]. (3. 1Gb)

Also, from eq(3.9a)

E[O(n,I)] = R11(I) (3.1 1a)

and

E[O*(n-k,l)I = R11(I) (3.11 b)

so that (3. 1 b) becomes

COO(kI) =Roý~(kI) - IRii(I)l2  (3.12a)

=E[xi(n)xi (n - I)xi (n - k)xi(n - I - k)I - IR~(). (3.12b)

Using eq(3.12b) in (3.8)
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1 NT-I-I1 NT-I-i

VBi(I,NT) N 2 C0(n - p,I) 01< NT -I (3.13a)
NT n=0 p=O

I NT-II-I NT-II-I*
N I C O(n - p,111) -(NT- 1) <I<0. (3.13b)

NT n=0 p=O

Using k = n - p where

-(NT - I - 1)•< k• NT- I - 1 for 0O< I < NT-1 (3.14a)

-(NT - Ill - 1)•< k• NT -II - 1 for -(NT-l)•<I•<0. (3.14b)

We also note that eq(3.14b) holds for all I so that

I NT-I-1
VBii(I,NT) N 2 1 [NT - Ill- Iki] COO(k,I) 0•<1 < NT -1 (3.15a)

NT k=-(NT-l-1)
1 NT-111-1
N 2 T INTl-i1- IkI] C¢¢(k,111) -(NT-1) <1 !5 0. (3.15b)

NT k=-(NT-IlI-1)

However, for negative lag I, we have

C¢¢(k,1I1) = CO(k,I) (3.16)

and eqs(3.15) can be written as

l,N NT-1l- [I - III + IkI] COO(k,l) (3.17)VBii(l'NT) = N•T I NT
k=-(NT-i) II NT

for both positive and negative values of I. For processes with zero-mean, jointly

stationary Gaussian quadrature components, the imaginary terms in CO(k,I)

cancel when summed over positive and negative values of k (Appendix A) so that
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NT-111-1 1+l l
VB..(I,NT)= NT -= I- - INITl] Re{C[(kI)}. (3.18a)

k=-(NTII-1j -)

=I I [1- 1Ikl [iRii(k)12 + Re{Fii(I,k)}] (3.18b)
N- N]

I k=-(NTT-f-l) NT

where

Rii(k) = E[xi(n)xi (n - k)] (3.19)

and
Fii(I,k) = E[xi(n)xi(n - I - k)]E[xi(n - I)xi(n - k)]. (3.20)

Using eq(A.6b) in Appendix A, it can be shown that in the special case where the
quadrature components maintain the relations

Rji(I) -. RQQ(I) (3.21a)

and

R!11(I) -R 9 10() (3.21 b)

then
Re t Fii(I,k)} = 0 for all I,k. (3.22)

We note that eqs.(21) hold for the special case of wide-sense stationarity of the
narrowband bandpass processes [21. In this case, eq(3.18b) becomes

NT-IIj-1

VBii(I,NT) = 1] lR(k)I2. (3.23)
T k=-(NT-(1-1) .

3.2 VARIANCE OF THE CROSS-CORRELATION FUNCTION ESTIMATOR

Analogous to the derivation leading to eq(3.18b), the variance of the
biased, time-averaged cross-correlation function estimator for processes
described by the general Gaussian case noted in section 3.1 has been shown 121 to
be
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NT-I-i-1

,- Nk]Re[Rii(k)Rj*(k) + Fil(,k)] (3.24)
VBij(INT) = N•T k=_(NTIIII)[ - T

where

Fif(Ik) = E[xi(n)xj(n - I - k)]E[xi (n - I)xj (n - k)]. (3.25)

We note that the term Re[Fij(ik)] will contribute a dependence of VBij(I,N) upon

cross-correlation terms such as the cross-correlation parameter lpijl defined in

section 2.4 and [1,2]. In [2], we show that for joint wide-sense stationarity of
narrowband multichannel bandpass processes,

RI(l) = RiQ(I) (3.26a)

and

R•j(1) =- Ri(1) (3.26b)

which leads to Fij(lk)=O. Under these conditions, eq(3.24) reduces to

1 NT-Ill-1 ! I + k *(.7

VBi=(INT) NT k -(NT-Il-i)I N]Re[Rii(k)Rjf(k)]. (3.27)
Bifl TiNT I*

k=-(NT-1I1-1)

Thus, for joint wide-sense stationarity of the narrowband multichannel
bandpass processes, the variance of the cross-channel correlation function
estimator is independent of the cross-channel correlation. This result is verified
via simulated results in sections 5.2 and 5.4.

3.3 SAMPLE VARIANCE OF THE CORRELATION FUNCTION

Consider NR realizations of the random process xi(n). Let each realization
be indexed by the integer ox; a=l,2,...,NR* Corresponding to the realization with

index a, let 1ijTb(I,NTIct) be the biased, time-averaged cross-correlation function

estimate using NT observation samples. The sample variance of the time-averaged
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cross-correlation function estimate is computed from NR statistically independent

realizations using the expression

Var[ 'ijTb(I'NT):NR] = 1 N 1JT ,NTIa) - A jT(INRI0X)I2  (3.28)
ax=l

where 1NR

AijTb(I,NRIn)O 1 ER ijTb(1,NTla). (3.29)
Ra=1

The autocorrelation function is obtained for i=j. Eq.(3.28) is used to compute the
variance of the time-averaged auto- and cross-correlation function estimators in
chapter 5 for comparison with eqs(3.23) and (3.27), respectively.
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3.4 ERGODICITY CONSIDERATIONS

In section 2.4 and [1,2], we presented functional forms for the auto- and
cross-correlation functions to obtain desired temporal and cross-channel
correlation of the processes to be synthesized. Using eq(2.30) in eqs(3.23) and
(3.27), we obtain [2], respectively

1 NT-Ill-i - IkIIkI 4 (Yii)21kl (3.30)

VBii(I,NT) - NT k=-(NT.IllI)

and
NT-Ill-1 - I+lkl]2 1k2 2  IkI

VBij (,NT) LNT II - NT J"l1 (XI 1) (T2 (X22)k=-(NT-ItI- 1)

cos[O0i(I) - Ojj(I)]. (3.31)

When invoking the ergodic assumption, one would like the variances of the
estimators expressed by eqs.(3.30) and (3.31) to be suitably small so that the
time-averaged correlation function is a satisfactory approximation to the
ensemble correlation function. For a given Xii and ai, these analytic expressions

provide a means for determining the required NT to minimize the variance to a

specified level. A unique aspect of this development is the determination of these
expressions in terms of both the observation window size NT, the process

parameters ai and 1ii and, for VBij(I,NT), the phase angles 0ii(i) and Ojj(I). These

expressions indicate that for Xii<l, their limit approaches zero as NT approaches

infinity. Thus, for stationary processes, ergodicity holds in all cases except for
total temporal correlation (ie., ,ii=l). In this case, VBii (I,NT)=oTi; ie., the square

of the process variance. Furthermore, as o2 and kii change, eqs(3.30) and (3.31)

provide a quantitative measure expressing the requirements on the observation
window size to obtain time-averaged correlation function estimates which yield a

close approximation to the ensemble averaged correlation functions.
Figure 1 is a plot of the error variance VBi (I,NT) for the biased, time-

averaged autocorrelation function estimator versus the number of time samples
NT used in the estimate. Each curve is plotted for a specific value of the temporal
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2
correlation parameter kii while aTii was fixed at a value of 4. As these curves
reveal, the error variance decreases with increasing NT, however, the rate of the

decrease is highly dependent upon the temporal correlation of the processes; ie.,
for processes with low temporal correlation (Xii approaching zero), VB(I,NT)

diminishes rapidly for increasing NT. However, for processes with high temporal
correlation (Xii approaching unity), VBii(I,NT) decreases slowly. At Xii = 1, the

process is no longer ergodic, so that the error variance no longer decreases as a
function of NT.

20-

Z ?,=0.5
• L=0. 9

- X=0.99

> 10 - '=0.999
-- =0.9999

X=1.0

0 • •

1 10 100 1000 10000 100000

N

Figure 1 Variance VBi(I,NT) at 1=0 for the time-averaged autocorrelation

function estimator as a function of NT time samples with the one-lag
2

temporal correlation Xii as a parameter and uii=4.
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3.5 THE NORMALIZED CORRELATION FUNCTION

The normalized time-averaged auto- and cross-correlation function
estimators are briefly discribed in this section. They are defined, respectively, as

jii(I,NT) = Alji(I,NT)/lfi(0,NT) (3.32)

and

Pij(INT) = lj (INT)/&ij(0,NT). (3.33)

Specific forms of the estimators such as the biased correlation function estimator
presented in eq(3.1) are used to evaluate the numerator and denominators of
eqs.(3.32) and (3.33). The normalized forms differ significantly from the
corresponding unnormalized form presented above in as much as the variance of
the estimates have a significantly different dependence upon process correlation.
We note that each estimator is expressed as a ratio of two random variables.
Each of these random variables, however, is highly correlated; ie., they are each

computed using the same observation data. As a result, the deviation of kij(INT)

about its mean level will be 'tracked' similarly by I(ij(0,NT); ie., if Aij(I,NT) lies

above (or below) its mean level, likewise, Aij(ONT) will lie above (or below) its

mean level. As a result, the normalized correlation function estimator will be
closer to its respective mean and its associated variance is reduced. As noted
above, its dependence upon process correlation will be quite unlike that of the
ordinary correlation function estimators. In fact, it will be similar to that of the
parameter estimators described later (see section 4.5).

The variances associated with the estimators described by eqs(3.32) and
(3.33) are difficult to develop since they involve ratios of two correlated random
variables. In [17], a taylor series expansion is used to derive approximate
expressions for the variance of these estimators.
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4.0 AUTOREGRESSIVE PROCESS PARAMETER ESTIMATORS

In this chapter, we describe the three parameter estimators used in this
study; namely, the multichannel Strand-Nuttall estimator [11,12] and two versions
of the Yule-Walker estimator [9,10]. In addition, we present a recursive method
used to calculate the multichannel matrix coefficients known as the Levinson-
Wiggins-Robinson method. The Burg estimator [13] and the multichannel
Strand-Nuttall estimator are equivalent for the single channel case.

Expressions for the error variance of time-averaged parameter estimators
are difficult to determine. However, the Cramer-Rao bound (CRB) provides a
reference for the performance of the estimators. An analytic expression for the
exact Cramer-Rao bound (CRB) of unbiased AR parameter estimates has been
presented [6]. The expression was shown to converge to the asymptotic form of
the CRB for large measurement time sample sizes. In chapter 5.0, we show
simulated results for the error variances of the estimators and compare these
results to the exact CRB as a function of the correlation of the processes.

4.1 THE YULE-WALKER ESTIMATOR

The Yule-Walker estimator used in this study initially uses estimates in the
covariance matrix of eq.(2.14). The Yule-Walker equation is then solved to
obtain the estimates of the parameters and the white driving noise covariance
matrix. The two versions of the Yule-Walker estimators used in this study differ
in that the estimates of the covariance matrix are obtained using either the biased
or the unbiased covariance estimator. They are refered to here as the Yule-
Walker with biased covariance (YWBC) estimator and the Yule-Walker with

unbiased covariance (YWUBC) estimator, respectively. The biased covariance
estimator is expressed in eq.(3.1). The corresponding unbiased estimator is
obtained by replacing the denominator of eq.(3.1) by NT-I. We point out,

however, that although the covariance estimator may be unbiased, the

corresponding Yule-Walker (YWUBC) estimator is not unbiased.

4.2 THE LEVINSON-WIGGINS-ROBINSON RECURSION

We now develop a recursive procedure to determine the multichannel
forward and backward matrix coefficients. The procedure was initially presented
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by Wiggins and Robinson [16] based on the scalar version of Levinson [141. The
approach presented in this subsection, however, is similar to that used by Strand
S1 11. Consider the pth order update of the multichannel forward PEF coefficient

expressed in the form

-Ap(O) - - 1p (0) - 0[l

A p(1) Ap-1(l) Bp_1(P-1)

_, A P(2) _ AP-.1(2) + B 1 2 Ei
_Ap + B p- 1(2) [-f~p (4.1)

Ap(p-1) Apto(p]l) Bp-j(l)
_- Ap(P) J L. [0] J L Bp-l(0) -i

where [Ff]p is a constant matrix called the forward reflection coefficient matrix

and Ap(O)=Ap-l(O)=Bp-.(O) = I, the JxJ identity matrix. The update equation is

therefore expressed as

Ap(k) - Ap-.(k) + Bp-i(p-k)[Ffip k=1,2,...,p-1 (4.2a)
I=[Fflp k=p (4.2b)

[01 k>p (4.2c)
=Ap(O)= I k=O. (4.2d)

Consider the order update of the backward PEF coefficient as

Bp(p) [01 - -A (0)
Bp(p- 1) Bp-I(p-l) Ap-i1l)

_Bp = • = " + • [bIp (4.3)
B p(1)Bl() Ap_•(p-1)

_Bp(0) _ _Bp_•(0) _ _ [01

where [Ebip is the backward reflection coefficient matrix. The update equation is

expressed as

Bp(k) = Bp_.(k) + Ap-I(p-k)[Fblp k=1,2,...,p-1 (4.4a)
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= [b]p k=p (4.4b)

=[0] k>p (4.4c)
= Bp(O) = I k=0. (4.4d)

We now determine the conditions under which the above equations hold.
First, we take the Hermitian transpose of eq(4.1) and postmultiply both sides of

the equation by [Rx.x]p 1 . For the LHS, the normal equations provide

H~ H
Ap [Rxxlp+ = {[1flH [01 ... [01 } (4.5a)

where [Ef]H is the JxJ forward error covariance matrix for a pth order filter.

Each side of eq(4.5a) is a vector of matrices containing p+i matrix elements.
Taking the Hermitian transpose of Ap in eq(4.1) and using it in (4.5a), we also

have

H[ H [0]1]H + [0] BpH1 [XX] (4.5b)
Ap [Rxx]p+1 = { _[ } [xxx]+i [- + (4.5 b) }[ I

so that

{ [[f]H [0] ... [0] = { Api [0] + [f]H { [0] BHl } [Rx]p+l- (4.5c)

Let us now introduce a partitioned form of [Rxx]p+l such that

-Rxx(0) Rx,,(1) Rxx(2) ... Rxx(P)-
Rxx(-1) Rxx(0) Rxx(l) ...Rxx(P-1) [fxl xp

[Rxx]p+i =H= (4.6)

Rxx(1 -p)Rxx(2-p)Rxx(3-p)... Rxx(1) L( xx) [Rxx(O)]

Rxx(-p) Rxx(1-p)Rxx(2-p)... Rxx(0)

where (Sxx)p is a vector containing p matrix elements and is defined as

(-Sxx)p = [Rxx(-P),Rxx(1-P),...,Rxx(- 1)]. (4.7)

We now consider
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{AHl to] I[ [FRxxlp+= [01 0 1 [ (4.8a)

(5--xx)p [Rxx(0)]
H - H

H H (4.8b)(ApI[Rxxlp A p-l(,.xx)p I. (.b

However, we can reduce the order of eq(4.5a) by one and obtain the Hermitian

transposed vector which will now contain p matrix elements, so that

H - HA4pJRx..lp = f[y-flp-i1[01 ... [01). (4.9)

Let us now define

[A]H H H H H -Rx(P)

=pq(Sxx)p =[{I Ap-j(L) ApR((2) ... Ap(p-1)4.Oa)

L RxX(l) J

= Rxx(P) + A• gpl(k)Rxx(p-k). (4.1Ob)
k=l

Substituting eqs(4.9) and (4.10a) in (4.8b), we have
H H H

{A,.p 1 [0]) [Rm]p+, = {[Ylp-i [0] ... [0] [A]p. (4.11)

We will utilize this expression later. We now repartitioned [Rxxp+1 into

the form given by

Rxx(0) Rxx(1) Rxx(2) ... Rxx(p)
Rxx(-l) Rxx(0) Rxx(1)""..Rxx(P- 1) Rx() (_RxHp

[RA&Ip+1 (4.12)
[Rxx(1-p)Rxx(2-plRxx(3-pl... Rxx(l) [_(Rx x]p (4.12)

L Rxx(-p) Rxx(1-p)Rxx(2-p)... Rxx(0) _

where
H = [Rxx(l) Rxx(2) -. Rxx(p)]. (4.13)

We now consider
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{[0] Bp1 [R,~xx~+lf= {[01 BpHI [Rxx(0)(_)p1] (4.14a)

-(-Rxx)p [Rxxlp
H H I(41b

S{Blp-(Rxx)p Bp1 [Rxxp. (4.14b)

However, from the backward multichannel normal equations, we have

H I H
[XXp= {[0] ... [0] [Zblp.1 1. (4.15)

Let us now define

,H H[A'] p BpH1 (L-xx)p (4.16a)

H H H -

= IBp .(p-1) Bp-I(p-2) ... Bp_ 1 (1) It 1 (4.16b)

Rxx(-2)

LR..%PJp-I

Rxx(-p) + I BHp-(k)Rxx(k-p). (4.16c)
k=l

Substituting eqs(4.15) and (4.16a) into (4.14b), yields

[0] 1 xx]p+ {[A'] [0] .[0] 0] [HbIpH1}. (4.17)

Using eqs(4. 11) and (4.17) in (4.5c), we obtain

,[f]pH [0] ... [0]} 1 { yf]pH.1 [0] ... [0] [A]p}pp

+[F-f~pH f[A'] [0 ... [01 [Eb pH- } (4.18)

And so, in order for eq(4.1) to hold, we must satisfy eq(4.18). From eq(4.18),
we have

H p-H H[Ap (4.19)

and
[01 = [AH H p [FblHl. (4.20)

From eqs(4.20) and (4.2b), we have

25



[fH H H H(.1
[f]P = AH(p) [Alp {[tIpI }p-1 (4.21)

We must now return to eq(4.3) and carry out a similar procedure that was
carried out for eq(4.1); ie., we post-multiply Hp by [Rxxlp+l

H - H
B xxp+, = {[0] ... [0] [Eb]Hp. (4.22)

For the first term on the RHS of eq(4.3), we postmultiply by the
partitioned form of eq(4.12). In this case, we obtain the same results as
expressed in eqs(4.14a) through (4.17). For the second term on the RHS, we
postmultiply by the partitioned form of eq(4.6) so that we obtain the same results
as expressed in eqs(4.8) through (4.11). Substituting these results into eq(4.22),
we have
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{[o] ... [0] [x ] 1 } = {[A' ]H [0] []H [

+ [I-b]H'{[Ef]H1 [0] ... [0] [A]H}. (4.23)

Eq(4.23) must therefore be maintained in order for the recursion in eq(4.3) to
hold. From the above equation, we have

[Xb]H = [XbIpH1 + [Fb]H [A]H (4.24)

[0] = [AH H [1-b [fH1. (4.25)

From eqs(4.25) and (4.4b), we have

[Irb]H = BpH(p) [A'] H I [ f]p_}-' (4.26)

Before summarizing the pertinent recursion equations used to estimate the
forward and backward coefficient matrices, we can at this point develop several
important relationships. Using equations (4.21) and (4.25) in (4.19), we obtain

[Tf]H H[f]HI + [rf]H [A" H (4.27a)

= [Yf]p-l - Ap (p) [Pb~p [Zf]p.1. (4.27b)

Using eq(4.26) in (4.27b), we have

,fH =[fH H H(P [FH
[Ef]H = [Xf]pH1- AH (p) BP (P)[-fpH1 (4.28a)

so that

H - H Hfp- (4.28b)

Similarly,

H H( H
[Eb]H = - Bp (p)4P)} [Xblp-1. (4.29)

Let us also consider the matrix identity

{(A H 1 [01) [Rxxp+i [101] [to] {1)1 [Rx__xp+I [Ap_1-H (4.30)

Rp-• 1 [0] 12
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N N H
which follows since [Rxx]p+1 = [Rxxp+1 . Using eqs(4.1 1) and (4.17) in (4.30), we

can write

H H[A]H0]p ... [01 I [0]LBPI(P-1)
- I -

F {[A'IH [0 ] ... [0] [Hbp1H 1, -

Ap- (1)

ApI( 2) (4.31)

Ap_ I(P-1)

[0]

so that after carrying out the matrix multiplications in eq(4.31), we have

[A]H = [A']p. (4.32)

Eq(4.32) is useful since it reduces the computations involved in the
determination of the reflection coefficient matrices; ie., eqs(4.21) and (4.26) can
both be expressed in terms of [Alp, so that

H H H IH *~(4.3 3 a)[f]p = AH (p) =- [A]H{ [b]p -1 (
1H H(P 7]

Wibp = B(p) = - [A]p{ [-fpHI -1. (4.33b)

In the single channel case, the scalar forward and backward prediction

error variances are equal. Since [A]p is a scalar, it follows from eqs(4.33) that
*

ap(p)=b p(p).

We again note that the expressions developed here are in terms of the
Hermitian operator as opposed to those often shown in the literature. This stems
from the notation used to express the autoregressive equation in eq(2.1) and
provides a more consistent notation as stated previously. We now summarize the
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pertinent equations for the recursion to update the forward and backward PEF
coefficients. First, we have the definitions

H -p- H
[A]p Rxx(p) + I A p.,(k)Rxx(p-k) (4.34a)

k=i
H ~p-1H

[A]H Rxx(-p) + Y, B p-1 (k)Rxx(k-p). (4.34b)
k=l

However, as shown previously

[A]H = [A']p. (4.35)

Hence, we need use only one of the equations in eqs(4.34). Next, from eqs(4.33)

[Ff]H = AH(p) = [A]H p -1 (4.36a)

]H H(p)A) p [IH }- (4.36b)

where
[fH H H)[I]H[yfp [I - AH (p) Bp(p)} [Pf]p_ . (4.37a)

H H H P-H
[b]= {I - Bp (p)Ap (p) } [b]p-1H (4.37b)

Then, SH H H

{ Ap-l(k)+[Ff]pBp-l(p-k) k=1, 2, ... , p- (

A(k) (4.38a)

[Fflp k=p
BB~kp Bp_(k) + [Fb p Ap_ •(p-k) k=l, 2, .. ,p-1H HH p

H (kp ]H (4.38b)
[Fb {H k=p.

We initiate the procedure using the initial conditions for eqs(4.37) as

[0f~o = [Eb]o Rxx(O) so that eqs(4.38) provide
H H [A] H [H (4.39a)

A, (1) =[1f'f]I I t [' 1 410~~bo

= - R XX(1)R-'(0) (4.39b)

and
H H H

BH (1) = [FbHi=- [A], {[EfIH}"1 (4.39c)
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= Rxx(-1)Rx(). (4.39d)

The procedure continues recursively until the desired order is reached.

4.3 THE STRAND-NUTTALL METHOD

The multichannel harmonic mean algorithm which is a generalization of
the Burg method was proposed independently by Strand [11] and Nuttall [12]. In
the single channel case, Burg [13] estimated the reflection coefficients directly
from the data subject to the constraint of minimizing a performance index

consisting of the mean-square values of the estimates of the forward and
backward prediction errors. In this case, the scalar forward coefficients of linear
prediction are the complex conjugates of the backward coefficients. In the
multichannel case, however, the forward and backward reflection coefficient
matrices are related by eqs(4.33a) and (4.33b), respectively. These equations
indicate that the multichannel forward and backward reflection coefficient
matrices have a more complicated relationship than in the scalar case.

Specifically, they are related through the forward and backward error covariance

matrices. Solving eqs(4.33) for -[A]p and noting that the error covariance

matrices are Hermitian, we have

H H ]HI=[
-[A]H = AH(p)[Xb]p = [Zf]pHI Bp(p). (4.40)

From eq(4.38) at k=p, we have

H H H H
- [A] = [f0p [4blp_1 =[f]p1 [rb]p (4.41)

These equations show the relationship between the forward and backward

reflection coefficients and error covariance matrices as well as the matrix [A].H

In the Strand-Nuttall algorithm, it is this latter matrix that we solve for. In
eq(4.41), note that the error covariances can be obtained from stage p-1. Two
additional well known relationships between the forward and backward error
residuals can be expressed as [ 10,111
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p = _,(n) + Ap4(p) .p_l(n-1) (4.42)

and

(n) _l(n-1) + B H(p) gp_j(n). (4.43)

In this section, we will establish a performance function which depends
upon estimates of the forward and backward error covariance matrices. This

"H
performance function will be minimized with respect to the matrix [A]p. In the

multichannel case, the reflection coefficients are chosen such that eqs(4.41)
through (4.43) are satisfied. These are the constraint equations under which
-[A]p will be selected to minimize the performance function. Using the notation

of Nuttall [12], we consider the unbiased error residual matrices over the
available data for a filter of order p as

Ep 1 N- HP(k)EH(k) Ep (4.44a)
k=p+l

F N H H
FP= N-p I Dp(k)a. (k)= Fp. (4.44b)

k=p+l
Using eqs(4.42) and (4.43) in the above equations and expanding yields

I N H H HEp = I-p [E'P- I(k)gP I (k) + Ap, (p)a.~~-)•plk

k=p+I

H H H
E lpI(k)A.1(k-1)Ap(p) + Ap (p)A.p_(k-1)A.p_1 (k-1)Ap(p)] (4.45a)

and
I N H H

FP N-p [-p-,(k-l)p--(k-l) + Bp(p)-Ep-(k)a- +(k-l)+

k=p+l
DPHH H

_p-1(k-i)Ep _(k)Bp(p) + Bp (p)Ep_.(k)E4_'(k)Bp(p)] (4.45b)

so that

Ep = [Afflp_- + ApH(p) [lfbHpI + [lffblp_.Ap(p) + ApH(p)[AbblP-lAp(p) (4.46a)

F [=1bb1p_1 + BH(p) [ofbp + [ H 113]~Bp(p) + BpH(p)[Iff]p_.Bp(p) (4.46b)

where the estimated time-averaged error covariance matrices are expressed as
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1 N H
LAff]p-l - N-p Y EP-I(k)EP-l(k) (4.47a)

k=p+l

1 NH

rftpbItp_ (k- HPN-p 1).p(k) (4.47c)
k=p+l

t-l will(k-1etr dla (k-e ). (4.47d)
k=p+l

In the Strand-Nuttall algorithm, we minimize the sum of the traces of the
weighted error matrices

Isn([A]p) = tr(ApE[ Ep) + tr(flp-a Fp) (4.48a)

where Ap_1 and UP-, are Hermitian, positive definite matrices which weight the

matrices Ep and Fp, respectively. These matrices provide arbitrary weights and

their selection will be determined later. Eq(4.48a) is the performance function
mentioned previously. In the single channel case, we can consider minimizing an
index of performance Ip(sp) expressed here as the weighted sum of the mean-
squared values of the forward and backward prediction errors Cp (n) and P3p(n),

respectively; ie.,

P -I(p) = aE[Ip p(n)[2] + (1-a)E[fpB(n)(2]. (4.48b)

Burg considered the minimization of eq(4.48b) for the case where a=1/2.

We will show that the minimization of eq(4.48a) as developed here, leads to a
generalization of the results obtained by the minimization of eq(4.48b) with

a=l/2. Using eq(4.40), let us define GpH such that

GH _[A] H = A H 1[Z~Hl [1~fpHlI Bp(p). (4.49)Gp - P y- - P
Changing notation for the Hermitian error covariance matrices to a form similar

to Nuttall's [10], let
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Up-1 -= [flp_1 (4.50a)

Vp.1-i [yblp_ (4.50b)

so that
AHp H[ -1

Gp HVp]H (4.51a)
AH(p) -1

H (p) = G[Upj ]H. (4.5 lb)

Using the last two equations together with eqs(4.46), we can write
SH[ -1 H -Ap-lEp + UP-Fp= Ap-1 { [kff1p-I + Gp [Vp_]H[Afblp_l + [K]fblp-[Vp.llGp

H[V-1 IH-1

+G~p[Vp l]n[fbb]p.l[Vp-l]Gp }+ -1 H [AbHI- -1]

2p-_I { [lbb]p-1 + Gp[Upi]H [lfb]p_. + Hp-[p-%

Gp[ pIH[tfflp_i[Up_llGp} (4.52)

Taking the trace of eq(4.52) and rearranging terms, we obtain

tr[Ap-.Ep + Qp =

H[V-1 ][fH

tr{ Ap-l[Aff]p_1 + Qp~-[tbb1p-1 + ApHIGp P- fp-1H -I
+ Qp ilfIbp-l[Up-1]

+r[AH[V-1 IH p-1 ]Gp
tr{ [Ap[lfblp-i[Vp'_1] + ApIG p- [V1, [ibblpi[Vp_11]

+1 H + • U1 -K•p-lGp[Up-] [fp-1 + p-IG p[ p]Hfp-[Up-]p- }.

(4.53)
We now consider the matrix relation

tr[KL] = tr[LK] (4.54)

where K and L are conformable matrices. Noting that all the above matrices are
JxJ, the last two terms in the second trace of eq(4.53) can be reexpressed (ie.,
with K= Qp-1Gp and L defined accordingly for each of these last two terms). Gp

can then be factored out in the second trace term so that
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tr[Ap 1 Ep + Up-IFp] =

= r{A-ilfffIp.l + Up-i[kbblp-i + _ -
H -i

+tr{ [Aptl[fb pi[Vp_,} + APIGp IVpI [tbb]p_[Vp_I]
-1 -1 -1 -1

+ [Up_IlH[tfblp_tIlp_ + [Up_ ]H[kff.p_I[Up_,]Gp)Qp_I]Gp

(4.55)
H

Nuttall now minimizes eq(4.55) by choice of Gp (in the Hermitian notation

used here), subject to eqs(4.41) through (4.43). Eq(4.49) can then be used to
solve for the coefficients Ap(p) and Bp(p) which achieve this minimization.

Nuttall [10] points out that the above equation is minimized by setting the
coefficient of Gp [contained in the large square brackets of the second trace term

of eq(4.55)] equal to a null matrix [15]. Premultiplying this coefficient by [Ap I]
-1 

P

and post multiplying by [Up-,], we obtain

- -H -1 -1 -1[lfblp-l[V p -I[p I + Gp [Vp-][~bpl[pl 2_
-p-d ' H -1 P-11 H-1

+ [Ap-iI[Up-I]H[kfb] p-l + Ap-I[Up-IllH[kff]Pp_ [U-.1 lGp = [0] (4.56a)

so that after rearranging terms
H-1]H -1 Q-1 -1 H-1IH -1 H

SGp [Vp_1I [bbIp-l[Vp-1I Ip-1 - Ap-i[Up-] LffIp-1 [UplGp -

[= fb~p_[Vp-1]p1 + [Ap-I][Up-] I[kfbp_1 (4.56b)

However, from eq(4.49)

H= _ [JH (.7Gp -

so that

[Xl]pAH + BH[X]H= CH (4.58)

where [A]1H is recognized as an estimate since limited data is being used in this

equation and

AH= [V-]H [bbI[V ] p-1  (4.59a)
-1B-i Alnfflpf -tB = Ap_[Up ff [Up-I (4.59b)
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0 - 1 -1 -1
0 H- [�tfblp_1[Vpll[QI _l1 + [Ap_jl[Up 1lH[fblp_1 . (4.59c)

In reference [12], Nuttall examined several forms of the weighting matrices
Ap-, and Op-, and showed that stable conditions are achieved if

-1 -1
Ap-1 = Up-, [-Ifp_1 (4.60)

and
U -1 =-1-

p=V [Ijbp-¾. (4.61)

Thus, the constant matrices AH, BH and CH simplify to

=[V- 1 ]H [kbb] = [V[ 1 ]H [kbb]H-1 (4.62a)
P -1 P -

BH = [l=ff]pH [Upi] -1 d H (4.62b)
CH 2[ltfbl]p 1  (4.62c)

where [lbb]p-,i [ifflp-i and [Up1 1] are Hermitian. We note that AH and BH each

contain the product of two matrices. The matrices [UP-,] and [Vp-,] are the
forward and backward error variances for a filter of order p-1, respectively.
They are obtained from the Levinson-Wiggins-Robinson recursion. The matrices
[fff] 1p- and [lbb]pl, however, are time-averaged estimates of these variances

using limited data [see eqs(4.47)]. Using eqs(4.62), eq(4.58) is now written as
[A -[V. JH H H -1H H

p p-1 [lbb]P-1 + [ftff]p_1 [Up] [Al]p = 2[k.fblp_.. (4.63)

In the single channel case, each element is a scalar where

p_1= p- (4.64)

and A H(P) = [I~ff,= [A]p [Vp-1I H becomes

A*
(p) = =(4.65)

From eqs(4.47), the terms [lbb]p_, , '[fflp-I and [kfbip-1 for the scalar case can be

expressed as
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[Off]p-i = [ 1p N lep-,(k)12 (4.66a)
k=p+l

=ifbp 1 N (46b- N-p , eP-j(k)1p-lI(k-1 ) (4.66b)
N-k=p+l

1H I N
[•bb]p-1 = [bb]p- N(k-)12N (4.66c)

k=p+l

Using eqs(4.64) through (4.66), the scalar version of eq(4.63) can be written as

- a•(p) Y p(k-1)12 - [k Iep-1(k)12 a*(p) Y, Ep-,(k)p*l(k-1)
k .k=p+l I.k=p+l1

(4.67)
Solving eq(4.67) for a*(p), we have

N
2 1 [E•-p(k)Ip*_(k-1)]k=p+l

N(P) -- 1 (4.68)p [IFep-,(k)12 + I1p3-(k-1)I 2]
k=p+I

The result expressed in eq(4.68) is the estimate of the single channel Burg
reflection coefficient. This result is equivalent to that obtained by minimizing
eq(4.48b) with respect to rp [13]. Thus the results presented here are a

generalization of the single channel Burg algorithm.

4.4 SOME CONSIDERATIONS OF BIASED PARAMETER ESTIMATORS

In this section, we briefly develop a relationship that will be useful in
evaluating the computed estimation results in chapter 5.0. Specifically, we
develop a relationship between the error variance, the sample variance and the
bias of the estimate.

Consider the estimate 'A of the parameter a. The error variance of ' is
expressed as
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Ve = E{ [-al[ft - a]* I} (4.69a)

= E[1jfi2] - aE(ft*) - a*E(ý) + 1a12  (4.69b)

For a biased estimator

E(ft) a + B(a) (4.70a)
E(ft*) =a* + B*(a) (4.70b)

so that

Ve = E[jftj2] - tat2 - aB*(a) - a*B(a). (4.71)

Using eqs(4.70), the variance of ft is expressed as

2El [f E[- E(ft )][ft- E(ft]* (4.72a)

= E[It•I2] - E(f)E(ft*) (4.72b)
= E[jft2] - tat2 - aB*(a) - a*B(a) +IB(a)12  (4.72c)

Eqs(4.71) and (4.72c) yield

2
Ve = c + IB(a)12  (4.73)

2
The quantity aa can be estimated by the computation of the sample variance

of ft. In chapter 5.0, we compute the quantities in eq(4.73) for verification of the
results. In addition, we will note the dependence of each upon the correlation of
the processes for various estimators.

4.5 SOME ERROR VARIANCE CONSIDERATIONS OF PARAMETER
ESTIMATORS

As noted in the beginning of this chapter, expressions for the error
variance of time-averaged parameter estimators are difficult to determine. This
is due to the fact that the estimators generally involve ratios of correlated random
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estimates. For example, from the Yule-Walker equation, the estimate fil(1) for

an AR(1) process is expressed as

fl = (I (4.74)

while for an AR(2) process, we have the estimators
k(1) = A(2)k(-1) - A()(O) (4.75a)

ft(OA(0) -f(1 -I
and

= (1)&)(1 ) - 1&(2)A(0) (4.75b)

The correlation among the estimates k(I) is due to the use of a single set of
observation data in the estimation procedure. The above equations reveal a
similar form to that noted in section 3.5 for the normalized correlation function
estimators; ie., the deviation of the numerator terms about some mean level will
be 'tracked' similarly by the denominator terms. If the numerator terms increase
(or decrease), the denominator terms will also increase (or decrease). As a
result, a type of 'normalization' results so that the estimator will be closer to its

respective mean and its associated variance is reduced as compared to the

corresponding performance of the individual estimates m(I).
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5.0 RESULTS

5.1 COMPUTED VARIANCE OF THE AUTOCORRELATION FUNCTION
ESTIMATOR

In this section, we validate eq(3.30) which is a special case of eq(3.27)
using a real, exponentially shaped autocorrelation function. The real AR(1)
process also has an exponential autocorrelation function and we use it here in the
synthesis of the observation processes. Its autocorrelation function is expressed
as

RAR(k) = RAR(0) [-a(l)]Ikl (5.1a)
2 IkI=Y AR [-a(1)] (5. 1b)

where
2

_Yu 2
RAR(M)- 1 -a2(1) =AR (5.2)

2 2
and au, a(1) and aAR are the white noise driving variance, the AR(l) parameter,

and the variance of the AR(1) process, respectively. In the special case of the
AR(1) process used in this example, the constants in eq(2.30) were chosen such

that X=-a(1), YLGi--2AR and 0ii(I)=0 for all I. Table 1 contains the parameters used
2

in the process synthesis procedure described in section 2.4. The variance yil was
held fixed at 4 while Xii was varied using 0.1, 0.7 and 0.99.

Fig. i Xi NT NR

2 4.0 0.1 100 10,000

3 4.0 0.7 100 10,000
4 4.0 0.99 100 10,000

Table 1 Parameters used in the synthesis of the processes analyzed in Figs.2
through 4.

Figs. 2 through 4 show the biased time-averaged autocorrelation functions
computed with eq(3.1) and their associated variances for the processes described
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in the Table 1. For each figure, plot (a) shows six realizations of the biased,

time-averaged autocorrelation estimator aTb(I) plotted over 64 lag values using

NT=100 time samples. The corresponding ensemble averaged estimator AE(I) is

shown in plot b using NR=10,000. The sample variance Var[ AiifTb(I,NT):NRI of the

biased time-averaged autocorrelation function computed using eq(3.28) with
NR= 10 ,000 is displayed in c. The corresponding analytic calculation of VBii(l,NT)

using eq(3.30) is shown in plot d. The decrease in this quantity as a function of I
is a result of the weighting associated with the biased estimator. A similar
behavior is noted in [4] for continuous-time processes. The computed results
(plots c) are in excellent agreement with the analytic expressions shown in plots d
(note the scale change between plots c and d in Fig. 2).

In Fig. 5, the maximum value of VBii(I,NT) which occurs at 1=0 is plotted

(solid curve) as a function of Xii for NT=100 and NT=1000 using the analytic

expression of eq(3.30) for the AR(l) process. The corresponding sample
variances of the time-averaged autocorrelation function estimates computed at lag
zero using eq(3.28) with i=j for the synthesized data processes are also plotted (o)
on this curve. These values were computed using NR realizations of the
functions. For NT =100, NR= 10 ,000 was used while for NT =1000, the number
of realizations was reduced to NR=1,000. Reducing NR decreases the confidence

level associated with the computation of the sample variance Var[IIjITb(I,NT):NR].

However, the error bars representing one standard deviation from the mean are
less than the size of the printed (.).

The results shown in Fig.5 indicate the significant increase in the variance

VBii(I,NT) as a function of Xii. In addition, it provides a measure of the required

observation window size necessary to achieve a specific level of the variance.
For example, the curve for NT=1000 has a very distinct knee for Xii=0.9. For

processes with a temporal correlation above this value, a larger observation data
window would be required to reduce VBii(I,NT) to values less than 0.15. We also

note that for NT=100, large variances can be obtained even for moderately low
values of Xii. In [2], similar plots are shown for higher values of NT-
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Figure 2 Time-averaged autocorrelation function and its variance for an AR(1)

2b

process; L---0.1, a 2=4 a.) biased A i~(1) (6 trials) using NT=100 b.) ensemble

averaged 1kE(l) using 10,000 realizations c.) computed sample variance of the
biased A iiTb (1) d.) analytical variance of the biased A iiTb(O).
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Figure 3 Time-averaged autocorrelation function and its variance for an AR(l)
2process; X=-0.7, as--4 a.) biased A..i (I) (6 trials) using NT=100 b.) ensemble

averaged AE(i) using 10,000 realizations c.) computed sample variance of the
biased A•.Tb (I) d.) analytical variance of the biased A iiTb(I).
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Figure 4 Time-averaged autocorrelation function and its variance for an AR(1)
2

process; X=0.99, a,=4 a.) biased liiTb(1) (4 trials) using N T=100 b.) ensemble

averaged A.E(I) using 10,000 realizations c.) computed sample variance of the

biased HiiTb(1) d.) analytical variance of the biased AkiiTb(I).
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Figure 5 Maximum variance of the time-averaged autocorrelation function2

versus ii for Gii=4 ; analytical (-) and computed (-).
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5.2 Computed Variance of the Cross-Correlation Function
Table 2 contains the parameters used in the process synthesis procedure

[1,2] for a two channel AR(1) process with real correlation functions. For the2 2
cases considered here, the variances of the two processes, denoted as a21• and a 22,

were both held fixed at 4 while XH1 and X22 had values of 0.1, 0.5 and 0.99. The
cross-correlation coefficient Ip12 I had values of 0.99, 0.5 and 0.0.

Fig. X112  
2 2  k12 1P12

1  NT NR 112

6 4 4 0.1 0.1 0.1 0.99 100 1000 0
7 4 4 0.1 0.1 0.1 0.50 100 1000 0
8 4 4 0.1 0.1 0.1 0.00 100 1000 0
9 4 4 0.5 0.5 0.5 0.50 100 1000 0
10 4 4 0.9 0.9 0.9 0.50 100 1000 0

Table 2 Parameters used in the synthesis of the processes analyzed in Figs.2
through 4.

Figs 6 through 10 show the variances of the time-averaged cross-
correlation function estimates based on the computed values of eq(3.28) and the
analytic expression of eq(3.31). The computed results are in excellent agreement
with the analytic expressions. In Figs.6c, 7c and 8c, we observe that the
computed sample variance is not affected by changes in I012I. This observation is

consistent with the point made in section 3.2 that, in the special case where
eqs.(3.26) hold, Fij(I,k)=0 and the variance of the cross-correlation function
estimator is independent of the cross-correlation parameter Ip 121.

In Fig.1 1, the maximum value of VB.i(I,NT), which occurs at 1=112=0, is

plotted (solid curves) as a function of X= 11=X, 22 for NT=100 and NT=I000 using2

the analytic expression of eq(3.31) and oa1=a722=4. The corresponding maximum
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Figure 11 Variance of the time-averaged cross-correlation function at 1=112=0
22

versus X=X11=X22 for (y= 2 22=4; analytical(-) and computed (.).

values of the sample variances of the time-averaged cross-correlation function
estimates computed using the synthesized data processes are also plotted (°) on
this curve. These values were computed using NR= 1000 realizations of the
estimates. In several of the figures, we note the increase in the variance of VBij(I)

over the results presented in the previous section. This is simply due to the
decrease in NR from 10,000 to 1,000 thus increasing the uncertainty of the

statistical calculations.
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5.3 COMPUTED ERROR VARIANCE OF SINGLE CHANNEL AUTO-
REGRESSIVE MODEL PARAMETERS

In this section, we consider complex autoregressive (AR) time series
models with known order and show computed simulation results for the error
variance, the bias and the variance of the parameter estimates using the three
estimators described in chapter 4.0. Both Gaussian and K-distributed processes
are considered.

5.3.1 Performance with Gaussian Processes

Complex Gaussian autoregressive (AR) time series models are considered
in this subsection. Tables 3a, b and c, show the estimated means, error variances
and sample variances, respectively, of the a(1) coefficient for NT values ranging

from 10 to 500. These values were obtained for each estimator using a complex
single channel AR(l) process 'without noise'. The processes were synthesized
with the real exponential correlation function of eq(5.1b). In Tables 4a through
4f, we focus on NT=10 and 100 using more X values. The value of the bias B (the

difference between the estimates ý(1) and the true value) for each estimator is
also shown. The method described in section 2.4 was used to synthesize each
process. In the special case of the AR(l) process, the one-lag temporal
correlation parameter X is the negative of the AR coefficient. Although the true
parameters of the autoregressive process are real, the processes themselves are
complex. Thus, an imaginary component of the estimate will, in general, be
obtained. This component, however, becomes negligible in the limit as the
estimate approaches the true value. Only the means of the real part of the
estimated coefficients are shown here since the complex parts were small for

2these cases. Computed values of the error variance of ft(l) and 6u are obtained
2 2

using NR=10,000 realizations where 9(l) and 6u are the estimates of a(l) and 2u,
respectively. Fig. 12a shows the error variances of ft(l) versus X using NT= 10 for
the three estimators. Corresponding log scale plots for NT=10 and 100 are shown

in Figs.12b and 12c, respectively. Each of these plots are compared to the exact
unbiased Cramer-Rao bound [6]. We note that the error variances of the
estimators lie below that of the Cramer-Rao bound for most values of A. This
observation is not unexpected since these estimators are not unbiased.
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X true NT mean Re f(1) mean Re f(l) mean Re (l)

a(1) YWUBC YWBC Burg Algorith.

0.1 - 0.1 10 - 8.9437x10"2 - 8.0494x10"2 - 8.9294x 10-2

S-0.1 50 -9.9174x10 2 -9.7190x10 2 -9.9191x10 2

-0.1 100 -9.9981x10 2 -9.8981x10 2 - 1.0031x10- 1

- 0.1 200 - 1.0006x10- 1 - 9.9560x10"2 - 1.0006x10-1

- 0.1 500 - 1.0029x10 1 - 1.0009x10- 1 - 1.0029x10- 1

0.5 - 0.5 10 - 4.5493x10"1 - 4.0944x10- 1 - 4.5390x10"1

-0.5 50 - 4.9035x10 1 - 4.8055x10 1 - 4.9029x10- 1

-0.5 100 - 4.9533x10-1 - 4.9038x10 1 - 4.9534x10-1

-0.5 200 - 4.9724x10- 1 - 4.9475x10-1 - 4.9722x10-1

-0.5 500 - 4.9872x10-1 - 4.9773x10 1 - 4.9873x10l

0.9 -0.9 10 - 8.3169x10- 1 - 7.4852x10 1 - 8.3815x10-1

-0.9 50 - 8.8284x10-1 - 8.6518x10 1 - 8.8369x10 1

-0.9 100 - 8.9088x10'- - 8.8197x10-1 - 8.9110x10-1

-0.9 200 - 8.9557x10- 1 - 8.9109x10-1 - 8.9562x10"l

- 0.9 500 - 8.9802x10" 1 - 8.9622x10"1 - 8.9802x10-1

0.99 -0.99 10 - 9.6398x10- 1 - 8.6758x10"1 - 9.6822x10 1

-0.99 50 - 9.7772x10 1 - 9.5817x101 - 9.7979x10 1

-0.99 100 - 9.8209x10- 1 - 9.7226x10- 1 - 9.8332x10-1

-0.99 200 - 9.8573x10-1 - 9.8080x10-1 - 9.8623x10-1

-0.99 500 - 9.8801x10I 1 - 9.8603x10 1 - 9.8813x10 1

0.9999 -0.9999 10 - 9.9896x10 1 - 8.9906x10 1 - 9.9917x101

-0.9999 50 - 9.9929x10 1 - 9.7931x10" 1 - 9.9947x10 1

-0.9999 100 - 9.9931x10-1 - 9.8932x10- 1 - 9.9949x10-1

-0.9999 200 - 9.9945x10 1 - 9.9446x10 1 - 9.9959x10 1

-0.9999 500 - 9.9955x10-1 - 9.9755x10-1 - 9.9967x10-1

Table 3a Tabulated values of the mean for the real part of 9(1) with X and NT as
parameters and computed using NR= 10 ,000 realizations.
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error variance error variance error variance unbiased exact
, NT of 9(1) of 9(1) of 9(1) Cramer-Rao

YWUBC YWBC Burg Algorith. bound

0.1 10 9.9742x10-2  8.1081x10-2  9.9524x10- 2  1.1088x10-1

50 1.94440x10-2  1.8678x10- 2  1.9449x10-2

100 9.9574xI0-3 9.7603x10-3 9.8274x10-3 1.0099x 10-2

200 4.9522x10-3  4.9030x10 3  4.9518x10 3

500 1.9872x10- 3  1.9791x10- 3  1.9871x10- 3

0.5 10 8.4426x10-2  7.4780x10-2  8.2327x10- 2  1.04167x10-1

50 1.5339x10-2  1.5021x10- 2  1.5196x10-2

100 7.7212x10-3  7.6388x10- 3  7.6932x10-3  1.0034x10-2

200 3.7136x10-3  3.6965x10-3  3.7058x10-3

500 1.5107x10-3  1.5082x10"3  1.5088x10- 3

0.9 10 4.0044x10-2  5.1605x10-2  3.5420x10-2  5.9975x10-2

50 5.1584x10-3  5.8837x10 3  4.7416x10-3

100 2.2807x10-3  2.4789x10-3  2.1737x10- 3  9.3074x10-3

200 1.0532x10-3  1.1026x10- 3  1.0269x10-3

500 3.9503x10-4 4.0380x1O-4  3.8968x 10-4

0.99 10 8.2635x10- 3  2.1132x10-2  6.6868x10-3  1.024x10-2

50 1.1963x10-3  2.0175x10 3  9.1984x10 4

100 4.8610x10-4  7.2965xi0-4  3.8344x10-4  5.0089x10-3

200 1.8450x10-4  2.4927x10-4  1.5359x10-4

500 5.7238x10-5  6.8802x10-5  5.1501x10-5

0.9999 10 1.7938x10-4  1.0314x10-2  1.3863x10-4  1.1 x10-4

50 2.4836x10-5  4.4756x10-4  1.7980x10-5

100 1.5377x10-5  1.2665x10-4  1.0509x10- 5  1.Oxl0-4

200 5.3456x10-6  3.4784x10- 5  3.8399x10-6

500 2.2383x10-6  7.6558x10-6  1.6141x10-6

Table 3b Tabulated values of the error variances of 9(1) with X and NT as
parameters and computed using NR= 10 ,000 realizations.
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sample variance sample variance sample variance
X NT of9(l) of 9(1) of9(1)

YWUBC YWBC Burg Algorith.

0.1 10 9.9627x10-2  8.0698x10- 2  9.9406x10-2

50 1.9437x 10-2 1.8667x10-2 1.9446x10-2

100 9.9569x 10-3 9.7588x10-3  9.8249x10-3

200 4.9521x10-3  4.9027x10-3  4.9516x10-3

500 1.9871x10-3  1.9791x10- 3  1.9870x10-3

0.5 10 8.2194x10-2  6.6577x10-2  8.0201x10-2

50 1.5246x10-2  1.4642x10-2  1.5102x10-2

100 7.6993x10- 3  7.5461x10-3  7.6714x10-3

200 3.7043x10-3  3.6674x10-3  3.6965x10-3

500 1.5090x10- 3  1.5029x10-3  1.5070x10-3

0.9 10 3.5373x10- 2  2.8652x10-2  3.1590x10-2

50 4.8637x10-3  4.6711 x10-3  4.4756x10- 3

100 2.1974x10-3  2.1537x10-3  2.0945x10-3

200 1.0336x10-3  1.0233x10-3  1.0077x10-3

500 3.9107x10-4 3.8951x10-4  3.8572x10-4

0.99 10 7.5861x10-3  6.1448x10-3  6.2120x10-3

50 1.0455x10-3  1.0041x10- 3  8.1546x10-4

100 4.2336x10-4  4.1493x10-4  3.3881x104

200 1.6623x10-4  1.6457x10-4  1.3940x10-4

500 5.3270x10-5  5.3057x10-5  4.7999x10-5

0.9999 10 1.7848x104 1.4457x10-4  1.3803x10-4

50 2.4469x10-5  2.3500x10-5  1.7759x10-5

100 1.5035x10-5  1.4735x10-5  1.0299x10-5

200 5.1416x 10-6  5.0902x10-6  3.7203x10-6

500 2.1105x10-6  2.1021x10-6  1.5371x10-6

Table 3c Tabulated values of the sample variances of 9(l) with X and NT as
parameters and computed using NR= 10 ,000 realizations.
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mean error variance sample variance bias
X NT true Re 9(1) of9(1) of 9(1) B[i(1)I

a(1) YWBC YWBC YWBC YWBC

0.1 10 -0.1 -8.0494x10- 2  8.1081x10- 2  8.0698x10- 2  1.9506x10-2

100 -0.1 -9.8981x10 2  9.7603x10-3  9.7588x10 3  1.0190x10-3

0.2 10 -0.2 -1.6318x10- 1  8.0896x10- 2  7.9548x10-2  3.6820x10-2

100 -0.2 -1.9633x10- 1  9.6344x10-3  9.6219x10- 3  3.6700x10-2

0.3 10 -0.3 -2.4547x10-1  7.8376x10"2  7.5409x10- 2  5.4530xi0-2

100 -0.3 -2.9440x10- 1  9.0049x10-3  8.9737x10-3  5.6000x10-2

0.4 10 -0.4 -3.2317x10- 1  7.7914x10-2  7.2017x10- 2  7.6830x10-2

100 -0.4 -3.9142x10-1  8.3293x10 3  8.2560x10-3  8.5800x10 3

0.5 10 -0.5 -4.0944x10 1  7.4780x10 2  6.6577x10-2  9.0560x10-2

100 -0.5 -4.9533x10- 1  7.6388x10- 3  7.5461x10-2  4.6700x10-3

0.6 10 -0.6 -4.8869x10-1  7.3030x 10-2  6.0644x 10-2  1.1131x10- 1

100 -0.6 -5.8840x10 1  6.5236x10-3  6.3896x10 3  1.1600x10-2

0.7 10 -0.7 -5.7702x10-1  6.6399x10 2  5.1278x10-2  1.2298x10-1

100 -0.7 -6.8598x10-1  5.3763x10"3  5.1804x10-3  1.4020x10-2

0.8 10 -0.8 -6.6043x10-1  6.1667x10-2  4.2189x10-2  1.3957x10-1

100 -0.8 -7.8483x10-1  3.9796x10 3  3.7496x10-3  1.5170x10-2

0.85 10 -0.85 -7.0213x10-1  5.6941x10-2  3.5080x10-2  1.4787x10"1

100 -0.85 -8.3350x10'- 3.2694x 10-3 2.9930x10-3  1.6500x10-2

0.9 10 -0.90 -7.4852x10-1  5.1605x10-2  2.8652x10"2  1.5148x10-1

100 -0.90 -8.8197x10-1  2.4789x10-3  2.1537x10 3  1.8030x10-2

0.95 10 -0.95 -8.0363x10-1  4.0403x10-2  1.8980x10"2  1.4637x10-1

100 -0.95 -9.3093x 101  1.6403x 10-3  1.2766x,10 3  1.9070x 10-2

0.99 10 -0.99 -8.6758x10 1  2.1132x10-2  6.1448x10 3  1.2242x10-1

100 -0.99 -9.7226x10 1  7.2965x10-4 4.1493x10 4  1.7740x10-2

0.9999 10 -0.9999 -8.9906x10- 1  1.0314x10- 2  1.4457x10-4  1.0084x10-1

1 100 -0.9999 -9.8932x10-1  1.2665x10-4  1.4735x10-5  1.0580x 10-2

Table 4a Tabulated values of the statistics of 9(1) for the YWBC with X and NT as
parameters and computed using NR= 10 ,000 realizations.
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mean error variance sample variance bias
NT true Re E2u of 6" of &2u B[6]

WU 
U 

U

_ YWBC YWBC YWBC YWBC

0.1 10 3.96 3.6359 1.5455 1.4405 3.2410x10-1

100 3.96 3.9215 1.6015x10-1  1.5867x10"1  3.8500x10-2

0.2 10 3.84 3.5614 1.4756 1.3981 2.7860x10-1

100 3.84 3.8092 1.4627x10-1  1.4534x10-1  3.0800x10-2

0.3 10 3.64 3.4152 1.3107 1.2603 2.2480x10-1

100 3.64 3.6099 1.3955x10-1  1.3865x10-1  3.0100xlO1-

0.4 10 3.36 3.1971 1.1324 1.1060 1.6290x101

100 3.36 3.3389 1.1306x10- 1  1.1262x10"1  2.1100x,0-2

0.5 10 3.00 2.9463 9.7856x10-1  9.7567x10-1  5.3700x10-2

100 3.00 2.9920 8.8970x10- 2  8.8906x10-2  8.0000x10-3

0.6 10 2.56 2.6140 7.7840x10-1  7.7556x10 1  -5.4000x10-2

100 2.56 2.5659 6.7719x10"2  6.7691x10-2  -5.9000x10-3

0.7 10 2.04 2.2396 6.5311x10"1  6.1332x10"1  -1.9960x10"1

100 2.04 2.0578 4.4638x10-2  4.4324x10 2  -1.7800x10-2

0.8 10 1.44 1.797 5.9205x10"1 4.6463x10-1  -3.5700x10-1

100 1.44 1.4776 2.4925x10"2  2.3512x10-2  -3.7600x10-2

0.85 10 1.11 1.5772 6.3943x10"1  4.2122x10-1  -4.6720x 10-1

100 1.11 1.1602 1.8008x10-2  1.5490x10- 2  -5.0200x 10-2

0.9 10 0.76 1.3101 7.0149x10"1  3.9884x10-1  -5.5010x10-1

100 0.76 8.1552x10"1  8.7135x10- 3  1.1796x10- 2  -5.5520x10 2

0.95 10 0.39 1.0394 8.3888x10-1  4.1722x10 1  -6.4940x10 1

1 100 0.39 4.5763x10 1  9.2025x10-3  4.6284x10 3  -6.7630x10-2

0.99 10 0.0796 8.2175x10-1  1.0869 5.3602x10-1  -7.4215x10-1

100 0.0796 1.5669x10-1  9.6108x10-3  3.6671x10 3  -7.7090x10-2

0.9999 10 8.0O13x4 7.5213x10 1  1.1240 5.5949x10-1  -7.5133x10-1

1 100 8.00 13x4 8.0369x 10-2 1.2688x10-2 6.3565x10-3  -7.9569x 10-2

Table 4b Tabulated values of the statistics of 62 for the YWBC with X and NT as

parameters and computed using NR=10,000 realizations.
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mean error variance sample variance bias

SNT true Re 9(1) of 9(1) of 9(1) B[f(1)I
a(1) YWUBC YWUBC YWUBC YWUBC

0.1 10 -0.1 -8.9437x10- 2  9.9742x 10-2  9.9627x10-2  1.0563x10-2

100 -0.1 -9.9981x10-2  9.9574x10-3  9.9569x10-3  1.9000x10-5

0.2 10 -0.2 -1.8161x10-1  9.9547x10-2  9.9218x10-2  1.8390x10-2

100 -0.2 -1.978 1x10- 1  9.6865x 10-3 9.6827x10-3  2. 1900x10-3

0.3 10 -0.3 -2.7341x10-1  9.5300x10-2  9.4582x10-2  2.6590x10-2

100 -0.3 -2.9687x10-1  9.0241x10- 3  9.0143x10-3  3.1300x10-3

0.4 10 -0.4 -3.6434x10-1  9.0698x10-2  8.9435x10- 2  3.5660x10-2

100 -0.4 -3.9608x10-1  8.6024x 10-3 8.5877x10-3 3.9200x10-3

0.5 10 -0.5 -4.5493x10- 1  8.4426x10-2  8.2194x10- 2  4.5070x10-2

100 -0.5 -4.9533x10-1  7.7212x10- 3  7.6993x10-3  4.6700x10-3

0.6 10 -0.6 -5.4432x10-1  7.7740x10-2  7.4647x10-2  5.5680x10-2

100 -0.6 -5.9340x10-1  6.5662x10-3  6.5231x10-3  6.6000x10-3

0.7 10 -0.7 -6.3791x10-1  6.7425x10-2  6.3568x10-2  6.2090x10-2

100 -0.7 -6.9267x10-1  5.2886x10- 3  5.2353x10-3  7.3300x10-3

0.8 10 -0.8 -7.3311 x10"1  5.5550x10-2  5.1078x10-2  6.6890x10-2

100 -0.8 -7.9232x10 1  3.9145x10-3  3.8551x10-3  7.6800x10-3

0.85 10 -0.85 -7.8411 x10- 1  4.7431x10-2  4.3093x10-2  6.5890x10-2

100 -0.85 -8.4202x10 1- 3.1096x10-3  3.0453x10- 3  7.9800x10-3

0.90 10 -0.9 -8.3169x10-1  4.0044x10-2  3.5373x10-2  6.8310x10-2

100 -0.9 -8.9088x10-1  2.2807x10-3  2.1974x10-3  9.1200x10-3

0.95 10 -0.95 -8.9609x10- 1  2.5219x10-2  2.2315x10-2  5.391x10-2

100 -0.95 -9.4101x10- 1  1.3332x10- 3  1.2522x10- 3  8.9900x 10-3

0.99 10 -0.99 -9.6398x10 1  8.2635x10-3  7.5861x10 3  2.6020x10-2

100 -0.99 -9.8209x10- 4.8610x10-4  4.2336x10-4  7.9100x10 3

0.9999 10 -0.9999 -9.9896x10- 1  1.7938x10-4 1.7848x10- 4  9.4000x10-4

100 -0.9999 -9.9931x10- 1  1.5377x10-5  1.5035x10 5  5.9000x10 4

Table 4c Tabulated values of the statistics of ý(1) for the YWUBC with X and NT

as parameters and computed using NR=10,000 realizations.
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mean Re error variance sample variance bias
X NT true of 62 of 62 B[6']

u YWUBC YWUBC YWUBC YWUBC

0.1 10 3.96 3.5536 1.5976 1.4325 4.0640x 10-1

100 3.96 3.9199 1.6020x10-1  1.5860x10-1  4.0100x10-2

0.2 10 3.84 3.4482 1.4830 1.3297 3.9180x10-1

100 3.84 3.8051 1.4842x10-1  1.4722x10"1  3.4900x 10-2

0.3 10 3.64 3.2627 1.3887 1.2465 3.7730x10-1

100 3.64 3.6099 1.2943x10"1  1.2853x10"1  3.0100x10-2

0.4 10 3.36 3.0185 1.1599 1.0433 3.4150x10- 1

100 3.36 3.3219 1.1348x10"1  1.1205x10"l 3.8100x10-2

0.5 10 3.00 2.6973 9.6695x10-1  8.7529x10-1  3.0270x10-1

100 3.00 2.9714 8.8579x10-2  8.7761x10-2  2.8600x10-2

0.6 10 2.56 2.2974 7.2121x10 1  6.5231x10'- 2.6260x10-1

100 2.56 2.5329 6.5913x10-2  6.5186x10-2  2.7100x10-2

0.7 10 2.04 1.8303 5.2519xl0-1  4.8125x10-1  2.0970x10- 1

100 2.04 2.0199 4.2119x10-2  4.1721x10-2  2.0100x10-2

0.8 10 1.44 1.2782 3.4662x10-1  3.2047x10-1  1.6180x 10- 1

100 1.44 1.4227 2.1857x10-1  2.1560x10-2  1.7300x10-2

0.85 10 1.11 0.98478 2.6197x10-1  2.4632x10-1  1.2522x10l

100 1.11 1.0950 1.3562x10-2  1.3349x10- 2  1.5000x 10-2

0.9 10 0.76 6.8370x10-1  1.8335x10"' 1.7752x10-1  7.6300x10-2

100 0.76 7.5113x10- 1  7.8289x10 3  7.7503x10-3  8.8700x10-3

0.95 10 0.39 3.5411x0- 1  9.9623x10"2  9.8345x10-2  3.5890x 10-2

100 0.39 3.8545x10-1  3.9760x10- 3  3.9557x10-3  4.5500x10-3

0.99 10 0.0796 7.3049x10-2  1.8724x10-2  1.8681x10- 2  6.5510x10-3

100 0.0796 7.8683x10 2  1.7837x10- 3  1.7828x10-3  9.1700x10 4

0.9999 10 8.0013x10- 4  6.6967x10 4  1.8188x104 1.8186xi1- 4  1.3046x10-4

100 8.(X013x10-4  7.8370x10 4  2.1419x10 5  2.1419x10-5  1.6430x 10-5

"Fable 4d Tabulated values of the statistics of 62 for the YWUBC with k and NT as

parameters and computed using NR= 10 ,000 realizations.
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mean error variance sample variance bias

X NT true Re 9(1) of 9(1) of 9(1) B[•f(1)]
a(1) BURG BURG BURG BURG

0.1 10 -0.1 -8.9294x10"2  9.9524x 10-2  9.9406x10-2  1.0706xl0"2

100 -0.1 -1.0031x10 1  9.8274x10-3  9.8249x10- 3  -3.1000x10-4

0.2 10 -0.2 -1.8327x10-1  9.9120x10-2  9.8850x10"2  1.6730x10-2

100 -0.2 -1.9729x10" 1  9.6306x10-3  9.6242x10- 3  2.7100x10-3

0.3 10 -0.3 -2.7314x10 1  9.3171x10-2  9.2458x10-2  2.6860x10-2

100 -0.3 -2.9661x10"1  9.2899x10-3  9.2793x10- 3  3.3900x10-3

0.4 10 -0.4 -3.6327x10- 1  8.8534x10-2  8.7192x10"2  3.6730x10"2

100 -0.4 -3.9625x10 1  8.4301xi0-3  8.4168x10 3  3.7500x10-3

0.5 10 -0.5 -4.5390x10-1  8.2327x10-2  8.0201x10-2  4.6100x10-2

100 -0.5 -4.9534x10 1  7.6932x10-3  7.6714x10- 3  4.6600x10-3

0.6 10 -0.6 -5.4378x10 1  7.5013x10-2  7.1847x10-2  5.6220xx10 2

100 -0.6 -5.9440x10"1  6.4842x10-3  6.4531x10-3  5.6000x10-3

0.7 10 -0.7 -6.3707x10-1  6.4977x10-2  6.1022x10"2  6.2930x10"2

100 -0.7 -6.9288x10 1  5.2134x10-3  5.1632x10-3  7.1200x10-3

0.8 10 -0.8 -7.3561x10-1  5.1247x10-2  4.7091x10-2  6.4390x10 2

100 -0.8 -7.9190x10"1  3.8491x10-3  3.7838x10-3  8.1000x10-3

0.85 10 -0.85 -7.8489x10-1  4.3703x10-2  3.9469x10- 2  6.5110x10-2

100 -0.85 -8.4187x10-1  3.0015x10-3  2.9356x10-3  8.1300x10-3

0.9 10 -0.9 -8.3815x10-1  3.5420x10-2  3.1590x10- 2  6.1850x10-2

100 -0.9 -8.9110xl0 1  2.1737x10 3  2.0945x10-3  8.9000x10-3

0.95 10 -0.95 -8.9749x10"1  2.3537x10"2  2.0781x10-2  5.2510x10-2

100 -0.95 -9.4120x10-1  1.2599x10"3  1.1822x10- 3  8.8000x10-3

0.99 10 -0.99 -9.6822x10 1  6.6868x10 3  6.2120x10-3  2.1780x10-2

100 -0.99 -9.8332xi0"1  3.8344x10-4  3.3881x10- 4  6.6800x10-3

0.9999 10 -0.9999 -9.9917x10-1  1.3863x10-4  1.3803x10- 4  7.3000x10-4

100) -0.9999 -9.9949x 10-1 1.0509x 10-5 1.0299x 10-5 4.1 000x 10 -4

Table 4e Tabulated values of the statistics of f(1) for the Burg estimator with k
and NT as parameters and computed using NR=10,000 realizations.
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mean Re 6u error variance sample variance bias

, NT true of u of&2 B[6]
U ~ U

___ BURG BURG BURG BURG

0.1 10 3.96 3.5694 1.6092 1.4566 3.9060x 101

100 3.96 3.9199 1.6018x10- 1  1.5858x10-1  4.0100x10-2

0.2 10 3.84 3.4634 1.4662 1.3245 3.7660x10-1

100 3.84 3.7938 1.4626x10 1  1.4414x10 1  4.6200x10-2

0.3 10 3.64 3.2607 1.3007 1.1569 3.7930x10-1

100 3.64 3.6014 1.3610x10- 1.3463x10-1  3.8600x10-2

0.4 10 3.36 3.0320 1.1482 1.0407 3.2800x10 1

100 3.36 3.3264 1.1364x10- 1  1.1252x10- 1  3.3600x10-2

0.5 10 3.00 2.7151 9.1918x10- 1  8.3800x10-1  2.8490x10 1

100 3.00 2.9715 8.8333x10"2  8.7523x10-2  2.8500x10-2

0.6 10 2.56 2.3152 6.5754x10"1  5.9765x10"I 2.4480x10"1

100 2.56 2.5322 6.4634x10 2  6.3870x10"2  2.7800x10-2

0.7 10 2.04 1.8583 4.1647x10"1  3.8349x10"1  1.8170x10- 1

100 2.04 2.0216 5.2134x10-3  4.0778x10-2  1.8400x10-2

0.8 10 1.44 1.3143 2.1044x10 1  1.9466x10 1  1.2570x10 1

100 1.44 1.4238 2.0554x10-2  2.0294x10-2  1.6200x10-2

0.85 10 1.11 1.0187 1.2332x10"1  1.1500x10"1  9.1300x10-2

100 1.11 1.0992 1.2353x10 2  1.2238x10 2  8.0000x 10-2

0.9 10 0.76 6.9803x10"1  5.9288x10-2  5.5448x10-2  6.1970x10-2

100 0.76 7.5200x10-1  5.7107x10-3  5.6467x10- 3  8.0000x10-3

0.95 10 0.39 3.6265x10"1  1.5734x10- 2  1.4988x10"2  2.735x10-2

100 0.39 3.8643x10'- 1.5107x10- 3  1.4981x10- 3  3.5700x10-3

0.99 10 0.0796 7.4523x10-2  6.5985x10-4  6.3407x10-4  5.0770x10-3

100 0.0796 7.9082x10-2  6.4060x10-5  6.3791x10-5  5.1800xl104

0.9999 10 8.00]3x-4 7.5184x10-4  6.9146x10-8  6.6810x10-8  4.8290x10-5

'F 100 8.0013x-4 7.9691 x 10-4 6.3769x 10-9 6.3663x10-9  3.2200x 10-7

Table 4f Tabulated values of the statistics of 62 for the Burg estimator with X and

NT as parameters and computed using NR= 10 ,000 realizations.
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Figure 12a Error variance of ý(1) for the time averaged parameter estimators of
an AR(1) process versus the one-lag temporal correlation parameter
X using NT=10.
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Figure 12b Error variance of ý(l) for the time averaged parameter estimators of
an AR(1) process versus the one-lag temporal correlation parameter
X using NT=10 plotted on a log scale.
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X using NT=100.
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Unlike the correlation function estimators, the error variance of the AR
parameter estimators decreases with increasing temporal correlation. Between
X,=0.9 and 0.9999, the decrease in error variance for these estimators is nearly
three orders of magnitude as shown by the log scale plots of Figs. I 2b and 12c. In
Fig.12a, it is also interesting to note that for the small NT size used here (ie.,
NT=10), the error variance for (YWBC) is the lowest of the three for processes

with low temporal correlation (ie., X = 0.1). However, in Fig.13, we also
observe that the bias B[9(1)I of the (YWBC) estimate 9(l) computed over the
10,000 realizations is larger compared to the other two estimators for all values
of X and NT. The explanation for this apparently contradictory behavior is found
in Fig.14 where we observe that the variance of ý(1) using (YWBC) is much
smaller than the other estimators. From eq(4.73) in section 4.4, we note that a

2
very small variance (yg can compensate for a large bias thus resulting in a low

error variance. At a value of X = 0.65, however, a cross-over occurs in the
curves shown in Fig.12a so that the error variances of the Burg and (YWUBC)
algorithms are lower than the (YWBC) at higher temporal correlation values.
This results from the lower biases of the former algorithms as well as the fact

2
that the a values for the three estimators converge at high X (see Fig. 14).

In Figs.15a, b and c, we show the convergence of the mean estimate f(l) to
the true parameter value as NT increases for values of X=0.1, 0.9, and 0.9999,
respectively. For small time window sizes (ie., small NT), the bias of the

YWUBC is barely, but slightly, smaller than that of the Burg estimator (see
Fig.15a). As the temporal correlation increases, however, the performance of the
Burg estimator is superior as shown in Figs.15b and c. Finally, although the bias
of the YWBC estimator appears to be increasing dramatically for increasing
temporal correlation (see Fig.15c) as compared to the other estimators, the
percentage error is actually decreasing thus showing performance improvement
with increasing temporal correlation. In Figs.16, 17 and 18, we show plots for

the error variance, the bias and the estimator variance for U.
Tables 5a, b and c list the means, error variances and estimator variances

2 sigecane2rcesswt
2j, respectively, of a"(l), q(2) and u for single channel AR(2) processes with

various one-lag temporal correlation parameters ?, using the order 2 Burg
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NT=10.
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Figure 14a Sample variance of ft(1) for the time averaged parameter estimators
of an AR(l) process versus the one-lag temporal correlation
parameter X using NT=10.
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2X NT true mean Re 9(1) true mean Re 9(2) true mean Re 6u
2a(1) Burg Algorith. a(2) Burg Algorith. _Y_ Burg Algorith

0.1 10 -0.101 -0.089682 0.01 0.012920 3.9596 3.1581

100 -0.101 -0.099617 0.01 0.0098845 3.9596 3.8812

0.5 10 -0.625 -0.56279 0.25 0.20679 2.8125 2.249

100 -0.625 -0.61665 0.25 0.24397 2.8125 2.7597

0.6 10 -0.816 -0.73757 0.36 0.29377 2.2282 1.7904

100 -0.816 -0.80760 0.36 0.35263 2.2282 2.1835

0.7 10 -1.043 -0.94039 0.49 0.40322 1.5502 1.2639

100 -1.043 -1.0317 0.49 0.47984 1.5502 1.519

0.8 10 -1.312 -1.1861 0.64 0.52919 0.8502 0.70077

100 -1.312 -1.2994 0.64 0.62764 0.8502 0.83313

0.85 10 -1.464 -1.3292 0.7225 0.6045 0.53057 0.44617

100 -1.464 -1.4494 0.7225 0.70769 0.53057 0.52050

0.9 10 -1.629 -1.4964 0.81 0.6955 0.26136 0.22303

100 -1.629 -1.6133 0.81 0.7948 0.26136 0.25648

0.99 10 -1.9603 -1.8633 0.98 0.89688 3.1361e-3 4.4644x10-3

100 -1.9603 -1.9470 0.98 0.96703 3.1361e-3 3.0977x10-3

0.9999 10 -1.9995 -1.9809 0.9997 0.98197 4.7677e-7 1.9573x10-6

100 -1.9995 -1.9974 0.9997 0.99774 4.7677e-7 6.3050x10-7

Table 5a Mean of estimated parameters for a Gaussian AR(2) process using the
Burg algorithm with X and NT as parameters and NR=10,000.
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NT error var (1) error var 9(2) error vat 62

Burg Algorith. Burg Algorith. Burg Algorith

0.1 10 1.1012x10' 1.1393x10O1  1.9373
100 1.0019x10"2  1.0303x10-2  1.6370x10"1

0.5 10 1.1239x10- 2  1.1 166x10"1  9.398x10-1

100 9.6568x10" 3  9.5378x1O" 3  8.0525x10-2

0.6 10 1. 1145x10- 1  1.0946x10"1  5.9132x10" 1

100 9.1010x10"3  9.0057x10"3  5.0494x10"2

0.7 10 1.0683x10" 1  1.0539x10- 1  2.8203x10"1

100 7.9729x 10-3 8.040x 10-3 2.4269x 10-2

0.8 10 9.9714x10-2  9.6516x10-2  8.5696x10-2

100 6.4081x10-3  6.2261x10-3  7.3920x10" 3

0.85 10 9.39520x10-2  8.9116x10-2  3.3739x10-2

100 5.2861x10 3  5.2873x10 3  2.8461x10 3

0.9 10 7.992x10-2  7.3954x10-2  8.181x10- 3

100 4.0572x10-3  4.006x10-3  7.026x10-4

0.99 10 3.2103x10-2  3.0368x10 2  1.2169x10-5

100 8.405x104 8.3077x10-4  9.938x10 8

0.9999 10 5.6797x10 3  4.6069x10-3  1.7209x101 0

100 5.0524xx10"5  5.0442x 10-5  1.1187x10 1 3

Table 5b Error variances of the estimated parameters for a Gaussian AR(2)
process using the Burg algorithm with X and NT as parameters and
NR= 10,000.
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X NT sample var 9(1) sample var 9(2) sample var 2

Burg Algorith. Burg Algorith. Burg Algorith

0.1 10 1.1000xl0- 1  1.1394x10-1  1.2950

100 1.0018x10"2  1.0304x10- 2  1.5756x10-1

0.5 10 1.0851x10- 1  1.0978x10-1  6.2231x10-1

100 9.5875x10-3  9.5023x10-3  7.7746x10-2

0.6 10 1.0530x10-1  1.0508x10-1  3.9965x10-1

100 9.0303x10- 3  8.9521x10"3  4.8494x10-2

0.7 10 9.6310x10-2  9.7858x10-2  2.0006x10-1

100 7.8448x10-3  7.9375x10-3  2.3301x10-2

0.8 10 8.3871x10"2  8.4242x10-2  6.3381x10-2

100 6.2500x10-3  6.0740x10-3  7.1021x10 3

0.85 10 7.5749x10-2  7.5200x10-2  2.6618x10-2

100 5.0711 x10-3  5.0684x 10-3  2.7448x10-3

0.9 10 6.2334x10-2  6.0849x10-2  6.7118x10-3

100 3.8104x10"3  3.7745x10-3  6.7881x104

0.99 10 2.2685x10-2  2.3444x10-2  1.0406x10-5

100 6.6275x10 4  
6 .5 986x104 9.7917x10-8

0.9999 10 4.3379x10 3  4.2963x 10-3 1.7008x10 1 0

1 100 4.6262x10-5  4.6589x10-5  8.8243x10- 14

Table 5c Sample variances of the estimated parameters for a Gaussian AR(2)
process using the Burg algorithm with X and NT as parameters and
NR=I0,000.
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estimator. The estimates were obtained using batch sizes of NT=10 and 100.

Again, the number of repeated realizations was NR= 10 ,000. Figs.19, 20 and 21

show the error variances of 9(1), 9(2) and ku, respectively. Again, a significant

decrease in the error variance is noted at high values of temporal correlation.

For &2, the reduction in error variance using NT=100 is approximately 12 orders

of magnitude between X=0.1 and 0.9999.
The important point to be made regarding the above observations is that

the error variance, the estimator variance and the bias of the estimators are not
only dependent upon NT, but also on process correlation. Furthermore, the

superiority of a given estimator may change significantly depending upon process
correlation especially for low valuses of NT.
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Figure 19 Error variance of ý(1) for an AR(2) process using the Burg algorithm
with NT=l0 and 100.

100

. [, 10"
z4 :

0.0 0.2- 0. 0.6 . .

=0-
10l-3.
€€.• • N=10

€•.10-4' N=1O00

0.0 0.2 0.4 0.6 o.8 1.0
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5.3.2 Performance with Non-Gaussian SIRP Processes
In this subsection, computed simulation results of the error variances are

presented using the Burg estimator for autoregressive (AR) time series models
where the white noise driving process is non-Gaussian. Again, the order of the
process is assumed known. The non-Gaussian processes are modeled from the
general class known as spherically invariant random processes (SIRP). In [7], the
synthesis of such processes is developed. The special case of a K-distributed SIRP
process is considered here. Detection analyses involving K-distributed clutter
processes are presented in [8]. For processes consisting of in-phase (real) and
quadrature (imaginary) components, the K-distributed envelope PDF is expressed
as

2f- a rCc [ K-(r]atK_(-r) (0 _<r < oo)
fR(r)-F= P)L27 a-

where F(at) is the Eulerian Gamma function, K,(,) is the modified Bessel

function of the second kind with order a. Here, at is refered to as the shape
parameter.

AR(4) processes with various degrees of temporal correlation are
synthesized using various shape parameters, at. The sample mean, sample
variance and error variances of the estimated AR parameters and white noise
driving variances are listed in Tables 6a through 6d for several values of ax and
k. In all cases, NT=1000 time samples were used to obtain each estimate and
NR=1000 realizations were used to obtain the statistics.

Examination of the tables reveals that using NT=I000 time samples, good

estimates with low error variances are obtained for the a(k) coefficients, k=l to
4, for nearly all values of ax and X. Furthermore, the error variances for the
estimates of a(k) are insensitive to ax. The same point cannot be made for the

22
estimate of the white noise driving variance, 6-u', however. Although, the

estimates of the mean values of 2 are quite good (using NT=1000), the associated
error variances are quite revealing. In Figs. 18 and 19, we plot the error
variances of 82 as a function of ax with X as a parameter. Each curve reveals a
significant decrease in the error variance with increasing a (approximately two
orders of magnitude between ax=0.1 and 10). This result is explained by first
noting that in the limit as ax - oo, K-distributed processes approach that of the
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c true sample sample error bias
value mean variance variance

a(l) -0.32965 -0.32885 9.6365x104 9.6442x10-4 +8.OOOx1O4

a(2) 0.09963 0.099624 1.0361x10-3 1.0361x10-3 -6.000x10-6

0.1 a(3) -0.02967 -0.030629 1.0648x10-3 1.0665x10-3 -9.590x10-4

a(4) 0.0081 0.009436 1.0500x10- 3 1.05188x10-3 +1.336x10-3
2_ u 3.6076 3.7466 169.19 169.21 0.139

a(1) -0.32965 -0.32946 1.0004x10 3 1.0004x10 3 +l.900x10-4
a(2) 0.09963 0.099045 1.0895x10-3 1.0899x10-3 -5.850x104

0.5 a(3) -0.02967 -0.02976 1.0977x10- 3 1.0978x10-3 -9.Ox10-5

a(4) 0.0081 0.008522 9.9183x10-4 9.9223x104 +4.220x10-4

2 3.6076 3.6551 26.818 26.820 +4.750x10-2

a(1) -0.32965 -0.3302 9.4419x10-4 9.4479x104 -5.500x10-4
a(2) 0.09963 0.09920 1.0639x10 3 1.0644x10 3 -4.300x10-4

1.0 a(3) -0.02967 -0.028524 1.1300x10 3 1.1320x10 3 +1.146x10-3

a(4) 0.0081 0.007151 9.7787x10 4 9.7973x10-4 -9.490x10-4
2

Ou 3.6076 3.6619 13.606 13.609 +5.430x10-2

a(1) -0.32965 -0.33011 9.5535x104 9.5572x104 -4.600x10-4

a(2) 0.09963 0.10060 1.0742x10 3 1.0752x10 3 +9.700x10-4

10 a(3) -0.02967 -0.029265 1.0702x10-3 1.0752x10 3 +4.050xlO-4

a(4) 0.0081 0.0078392 1.0327x10"3 1.0328x10 3 -2.610x10-4

25u 3.6076 3.6188 1.237 1.2378 +1.120x 102

a(1) -0.32965 -0.32947 1.0314x10- 3 1.0310x10- 3 +1.800x10-4

a(2) 0.09963 0.098557 1.0885x10-3 1.0886x10-3 -1.073x10-3

00 a(3) -0.02967 -0.028013 1.1002x10- 3 1.1034x10-3 +1.657x10-3

a(4) 0.0081 0.0066742 1.0106x10-3 1.0124x]0-3 -1.426x 10-3
2 3.6076 3.5965 1.3756x10-2 1.3866x10-2 -1.110x10-2

Table 6a. Performance of the Burg estimator for an AR(4) process with (X as a
parameter and X=0.3, NT=1000 and NR=1000.

82



cc true sample sample error bias
value mean variance variance

a(1) -1.2934 -1.2914 9.4170x10-4 9.456x10-4 +2.000x10-3

a(2) 1.0513 1.0486 2.0586x10-3 2.066x10-3 -2.700x10-3

0.1 a(3) -0.63378 -0.6312 2.0904x10-3 2.099x10-3 +2.580x10-3

a(4) 0.2401 0.2388 9.0343x10-4 -1.300x10-3
2 1.2891 1.2810 3.137x10 2  3.144x10-2 -8.100x10-3

a(1) -1.2934 -1.2911 9.3737x10-4 9.4255x10-4 +2.300x10-3

a(2) 1.0513 1.0492 2.1866x10-3 2.1910x10- 3 -2.1OOx10-3

0.5 a(3) -0.63378 -0.63199 2.2355x10-3 2.2390x10-3 +1.790x10-3

a(4) 0.2401 0.23968 9.0611x10-4 9.0646x10-4 -4.200x10-4
02 1.2890 1.2807 8.1152x10-3 8.1839x10-3 -8.300x10-3

a(1) -1.2934 -1.2925 9.0805x10-4 9.0888x10-4 +9.000x104

a(2) 1.0513 1.0485 2.0950x10-3 2.1027x10-3 -2.800x10-3

1.0 a(3) -0.63378 -0.6299 2.1903x10-3 2.2059x10-3 +3.880x10-3

a(4) 0.2401 0.2377 9.3840x0-4 9.4483x104 -2.400x10 3

2 1.2890 1.2841 4.9590x10-3 4.9826x10 3 -4.900x10-3

a(1) -1.2934 -1.2917 9.3806x10-4 9.4155x10-4 +1.700x10-3

a(2) 1.0513 1.0484 2.2654x10- 3 2.2762x10 3 -2.900x10-3

10 a(3) -0.63378 -0.63092 2.3454x10- 3 2.3551x10- 3 +2.860x10-3

a(4) 0.2401 0.2383 9.8906x10-4 9.9259x10-4 -1.800x10-3
2

Su 1.2890 1.2830 2.0194x10-3 2.0554x10-3 -6.000x10-3

a(1) -1.2934 -1.2923 9.09lOxlO-4 9.0947x10-4 +1.100xl0 3

a(2) 1.0513 1.0497 2.0942x 10- 2.0951x10-3 -1.600x 10-

a(3) -0.63378 -0.63156 2.1302x10-3 2.1340x10 3 +2.220x10-3

a(4) 0.2401 0.23923 9.2802x10-4 9.2785x10 4 -8.700x10-4
2 1.2890 1.2834 1.674410 3 1.7038x10 3 -5.600x10 3

_U 1.2890 1.2834 I64x0 1.0x-5

Table 6b. Performance of the Burg estimator for an AR(4) process with cc as a
parameter and X=0.7, NT=I000 and NR=1000.
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true sample sample error bias
value mean variance variance

a(1) -2.6978 -2.6949 5.9992x10-4 6.0853x10-4 +2.900x10-3

a(2) 3.3081 3.3013 3.2060x10-3 3.2524x10-3 -6.800x10-3

0.1 a(3) -2.1852 -2.1788 3.1615x10-3 3.2027x10-3 +6.400x10-3
a(4) 0.6561 0.65389 5.8826x10-4 5.9325x10-4 -2.210x10-3

2 0.069747 0.067509 5.8782x10-2 5.8787x10°2 -2.238x10-3

a(1) -2.6978 -2.6939 5.6190x10-4 5.7698x10-4 +3.900x10-3

a(2) 3.3081 3.2985 3.1312x10-3 3.2225x10- 3 -9.600x10-3

0.5 a(3) -2.1852 -2.1753 3.1650x10-3 3.2641x10-3 +9.90x10°3

a(4) 0.6561 0.6519 5.9119x10-4 6.0818x104 -4.200x10-3

2 0.069747 0.070988 9.9154x10 3 9.9169x10 3 +1.241x10 3

a(1) -2.6978 -2.6945 5.5612x10-4 5.6765x10-4 +3.300x10-3

a(2) 3.3081 3.3006 3.0109x10-3 3.0704x10-3 -7.500x10-3

1.0 a(3) -2.1852 -2.1778 3.0589x10- 3 3.1154x10 3 +7.400x10-3
a(4) 0.6561 0.65298 5.6884x10 4 5.7859x10 4 -3.120x10 3

2 0.069747 0.07194 5.1243x10 3 5.1291x10-3 +2.193x10-3

a(1) -2.6978 -2.6953 5.7912x10-4 5.8551x10-4 +2.500x10-3

a(2) 3.3081 3.3014 3.0688x!0-3 3.1151x10-3 -6.700x10-3

10 a(3) -2.1852 -2.1781 2.9719x10 3 3.0236x10-3 +7.1O0xlO-3

a(4) 0.6561 0.65319 5.3793x104 5.4664x10-4 -2.910x10-3

2 0.069747 0.069316 4.9057x104 4.9076x104 -4.310X10- 4

a(1) -2.6978 -2.695 5.5435x10-4 5.6151x104 +2.800x10-3

a(2) 3.3081 3.3008 2.9622x10-3 3.0152x10-3 -7.300x10-3

oo a(3) -2.1852 -2.1773 2.9584x10-3 3.0199x10-3 +7.900x10-3

a(4) 0.6561 0.6526 5.6196x10 4 5.7378x10-4 -3.500x10-3
2Y 0.069747 0.069499 4.9018x10 6 4.9591x10 6 -2.480x104

Table 6c. Performance of the Burg estimator for an AR(4) process with ot as a
parameter and X=0.9, NT=10 0 0 and NR=1000.
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c true sample sample error bias
value mean variance variance

a(1) -3.8729 -3.8696 2.7532x10-5  3.8603x10-5  +3.30x 10-3

a(2) 5.7379 5.7280 2.3402x10-4  3.3179x10-4 -9.900x10-3

0.1 a(3) -3.8542 -3.8442 2.3299x104 3.3238x10-4 +1.1OOxl0-2

a(4) 0.99033 0.98695 2.7189x10-5  3.8638x10-5 -3.380x10-3
2 3.4907x10_6 2.8519x10_6 7.5142x10.l 7.555x10_11  -6.388x10-7

a(1) -3.8729 -3.8698 2.6899xIO05 3.6670x1O-5 +3.1OOxIO-3

a(2) 5.7379 5.7286 2.2970x10-4  3.1683x10-4 -9.300x10-3

0.5 a(3) -3.8542 -3.8448 2.2980x104 3.1921x10-4 +9.400x10 3

a(4) 0.99033 0.98711 2.6922x10-5  3.7300x10 5  -3.220x 10-3
2u 3.4907x10-6 3.5639x10-6 2.6984x10-11 2.6990x10-11 +7.320x10-8

a(1) -3.8729 -3.8698 2.6217x10-5  3.5597x10-5 +3.1OOx10-3

a(2) 5.7379 5.7287 2.2341x10-4  3.0717x10-4 -9.200x10-3

1.0 a(3) -3.8542 -3.8449 2.2297x10-4  3.0913x104 +9.300x10-3

a(4) 0.99033 0.98717 2.6076x10 5  3.6103x10 5  -3.160x10-3
2 3.4907x10-6 3.1827x10-6 9.7524x10- 12 9.8023x10-12 -3.080x10-7

a(1) -3.8729 -3.8697 2.6989x10 5  3.7185x10-5 +3.200x10-3

a(2) 5.7379 5.7284 2.2932x10-4 3.2023x10-4 -9.5OOx10-3

10 a(3) -3.8542 -3.8445 2.2859x104 3.2206x10 4  +9.700x10r3

a(4) 0.99033 0.98703 2.6732x10-5  3.7627x10-5 -3.300x10-3

2 3.4907x10_6 3.5003x10.6 1.2889x10_12 1.2890x10-12 +9.600x10-9

a(1) -3.8729 -3.8698 2.5457x10-5  3.4981x10-5 +3.1OOx10-3

a(2) 5.7379 5.7288 2.1643x10 4  2.9991x104 -9.1OOx10-3

00 a(3) -3.8542 -3.8449 2.1575x10-4 3.0044x104 +9.300x10-3

a(4) 0.99033 0.98717 2.5218x10-5  3.5166x10 5  -3.160x10 3

2 3.4907x10-6 3.4796xi0-6 1.1347x10-14 1.1458x10-14 -1.11xIO-8

Table 6d. Performance of the Burg estimator for an AR(4) process with cX as a
parameter and X=0.99, NT=1000 and NR=1000.
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Gaussian. Thus, for small values of ax, we have processes which depart most
significantly from Gaussianity. For these processes, the tails of the PDF
distribution are highest. Thus, for a fixed sample size NT, the uncertainty in the

estimate of the variance is expected to increase as a decreases. In Fig.19, we
show an expanded view of the upper three curves from Fig. 18. In this figure, we
note a two order of magnitude decrease in the error variance over the range of a
values from a=0.1 to 10. From the tables, we observe that these curves continue
to decrease by nearly two additional orders of magnitude as ax --> 0o. We also
note the drastic reduction in the error variance with increasing temporal
correlation expressed by the one-lag temporal correlation parameter X.
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Fig.22 The error variance of the estimate a2u versus the shape parameter (x with

the one-lag temporal correlation parameter X fixed.
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Fig.23 The error variance of the estimate 6Uversus the shape parameter a with
the one-lag temporal correlation parameter X fixed using an expanded
scale from Fig. 22.
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5.4 Computed Error Variance of Multichannel AR Model Parameters

In this section, we present the computed results for the means and error
variances associated with the multichannel estimates of the JxJ matrix coefficients
A(k) and [Ef]u defined by eqs.(2.1) and (2.6), respectively. The Strand-Nuttall

algorithm is used in all the cases presented here. Specific consideration is given
to the performance of the estimator not only as a function of the temporal
correlation on each channel, but also the cross-channel correlation. We consider
multichannel AR(2) processes with J=2 channels and various values of the one-lag
temporal correlation parameter %,j on channel j and the cross-channel correlation
parameter, Ipijl. In this case, we have parameters

A(k) = Eai1 (k) a12(k) 1
A a 2 1(k) a22(k) k=l,2 (5.4)

and
[EJ =11 Y-12](5)

[f =[ 121122

Table 7 contains the computed results for the estimates fil(l), g12(0), kll

and t12" The number of time samples used to obtain each estimate was NT=100
while the statistics were computed with NR=1000 realizations. In Figs. 22 and

23, we plot the error variances of the matrix element estimates f11(l) and tll.

Similar results were obtained for the estimates of the other elements.
Consistent with the results noted for single channel processes, the error

variances associated with the estimates of these coefficients decrease with
increasing temporal correlation. However, we now observe in Figs 22 and 23
that the error variance associated with the estimates 911(1) and ' 12 (0) increases

with increasing cross-channel correlation. In Figs.24 and 25, however, we
observe that the error variance associated with the estimates of the white driving

noise covariance matrix elements ±1, and ±12 are independent of the cross-

channel correlation. This result is consistent with the presentation made in section
3.2 that error variances of cross-correlation function estimates are independent of
the cross-channel correlation for the special case of wide-sense jointly stationary
narrowband bandpass processes as considered here.
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x11 X22 )12 IP121 TRUE MEAN OF SAMPLE ERROR

I VALUE ESTIMATE VARIANCE VARIANCE

0.1 0.1 0.01 0 a,, -0.101 -0.099721 1.0272x10 2  1.0263x10-2

a 12  0 -2.1981x10-3 1.0529x10-2 1.0525x10-2

7Lli 3.9596 3.8077 1.4491x10 1  1.6783x10-1

l12  0 1.9938x10-2 1.4529x10"1 1.4556x10"I

0.5 0.5 0.01 0 a,, -0.625 -0.61265 9.7337x103  9.8814x10-3

a12  0 4.3440x10-4 9.3721x10 3  9.3647x10-3

Ell 2.8125 2.7058 7.4709x10 2  8.6021x10-2

_12 0 1.4185x10-3 7.7050x10 2  7.7009x10 2

0.7 0.7 0.01 0 a,, -1.043 -1.0209 8.6619x10-3 9.1400x10-3

a 12  0 -2.3376x10-3 8.3557x10-3 8.3803x10-3

Eli 1.5502 1.4824 2.3082x10-2 2.7649x10-2

__ 12  0 2.5259x10-3 2.4681x10 2  2.4676x10-2

0.9 0.9 0.01 0 a,, -1.6290 -1.5929 4.7884x10-3 6.0843x10-3

a 12  0 -6.4223x10-4 4.8277x10 3  4.8239x10-3

Ell1 0.26136 0.25166 6.5474x104 7.4833x10-4

_12 0 1.9544x10 4  6.5406x10-4 6.5357x104

0.99 0.99 0.01 0 a,1  -1.9603 -1.9180 1.8241x10 3  3.6105x10-3

a 12  0 1.8338x10-5 2.2002x10 3  2.1980x10-3

ll 3.1361x10 3  3.0368x10 3 9.3876x10 8  1.0365x10 7

112 0 -6.4657x10 6 9.8708x10 8  9.8692x10 8

Table 7a Tabulated values of the mean and variances for the multichannel

coefficient estimates 911(1), 912(1) , ±,,(1) and ±12(1) for AR(2)
processes with specified temporal and cross-channel correlation
using the Strand-Nuttall estimator.
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X11  X22  X12 Ip121 TRUE MEAN OF SAMPLE ERROR

VALUE ESTIMATE VARIANCE VARIANCE

0.1 0.1 0.1 0.7 all -0.101 -0.10209 1.9722x10- 2 1.9706x10-2

a 12  0 5.6071x10 3  2.0244x10 2  2.0256x10 2

1I_1 3.9596 3.8016 1.4683x10"1 1.7166x10"l

_12 2.7717 2.6534 1.4752x10l 1.6142x10- 1

0.5 0.5 0.5 0.7 a,1  -0.625 -0.61097 1.9408x10- 2 1.9587x10-2

a 12  0 2.0894x10- 3 1.9262x10 2  1.9249x10 2

_ll_2.8125 2.7092 7.8848x10-2 8.9437x10-2

112 1.9687 1.9026 7.3984x10-2 7.8289x10-2

0.7 0.7 0.7 0.7 all -1.043 -1.0235 1.6809x10-2 1.7196x10 2

a12  2.557x10-7  1.5809x10-3 1.7263x10-2 2.6020x10 2

111 1.5502 1.4890 2.3195x10 2  2.6915x10-2

_12 1.0851 1.0405 2.4046x 10-2 2.6020x10-2

0.9 0.9 0.9 0.7 a11  -1.6290 -1.5993 8.7113x10-3 9.9725x10-3

a12  -2.1458xi0-7 -7.713 6xi0-4 8.9255x10-3 8.9177x10-3

_ll 0.26136 0.25214 6.1706x10-4 7.0158x10-4

112 0.18295 0.17707 6.4987x 10-4 6.8409x 104

0.99 0.99 0.99 0.7 all -1.9603 -1.9168 4.1238x10-3 6.0096x10-3

a 12  5.9009x 10-7 -7.0187x10-4 4.3465x 10-3 4.3438x10-3

_ _ _ 3.1361x10 3  3.0342x10-3 1.0060x10 7  1.1090x10 7

El2 2.195x10-3  2.1211x10- 3 9.8467x10-8 1.0388x10-7

Table 7b Tabulated values of the mean and variances for the multichannel
coefficient estimates 911(1), ' 12 (1) , ±,,(1) and t12(1) for AR(2) processes with
specified temporal and cross-channel correlation using the Strand-Nuttall
estimator.
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X1 I X22  X12 1Pl2 1  TRUE MEAN OF SAMPLE ERROR

VALUE ESTIMATE VARIANCE VARIANCE

0.1 0.1 0.1 0.99 all -0.101 -0.1027 4.9512x10l 4.9503x10l
a12  4.8161x10-7 3.1909x10-3 4.9880x10-I 4.9871x10-1

1l1 3.9596 3.8008 1.5615x10-I 1.8122x10-1

_12 3.92 3.7651 1.5696x10l 1.8080x10-1

0.5 0.5 0.5 0.99 a,, -0.625 0.6230 5.1454x10- 1 5.1421x10-1

a12  0 1.0188x10-2 5.1596x10-l 5.1579x10-1

1l1 2.8125 2.6910 7.7955x10 2  9.2635x10-2

_12 2.7844 2.6650 7.7097x10-2 9.1265x10-2

0.7 0.7 0.7 0.99 all -1.043 -1.0390 4.2740x10 1  4.2803x10-1

a12  -1.503x10-5 1.6488x10 2  4.2911x10-1 4.3012x10- 1

111 1.5502 1.4899 2.3652x10 2  2.7263x10-2

_12 1.5347 1.4759 2.3821x10 2  2.7255x10 2

0.9 0.9 0.9 0.99 all -1.6290 -1.5976 2.3052x101 2.3128x10!

a12  1.0300x10-5 2.5663x10- 3 2.3220x10! 2.3197x10l

S_11 0.26136 0.25186 6.6874x10 4  7.5798x10-4

_ 12  0.25873 0.24928 6.6927x10-4 7.5788x10-4

0.99 0.99 0.99 0.99 a,, -1.9603 -1.9143 1.1510x10- 1 1.1712x10- 1

a 12 -7.1755x10-5 -3.7304x10 3  1.1472x10 1  1.1462x10 1

_ _l 3.1361x10 3  2.9814x10 3  1.0885x10-7 1.2240x10-7

_l 2  3.067x10 3  2.9483x10 3 1.1691x10-7 1.3090x10-7

Table 7c Tabulated values of the mean and variances for the multichannel

coefficient estimates g 1(1), 12(1), 11(1) and ±12(1) for AR(2) processes with

specified temporal and cross-channel correlation using the Strand-Nuttall
estimator.
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Figure 24 Error variance for the estimate 911(1) coefficient versus the one-lag
temporal correlation parameter =X11=XI12 using the Strand-Nuttall
algorithm with order 2, NT= 10 0 time samples, and 'P121 as a

parameter.
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Figure 25 Error variance for the estimate •l(I) coefficient versus the one-lag
temporal correlation parameter X=X,,1=X12 using the Strand-Nuttall
algorithm with order 2, NT= 10 0 time samples, and JP121 as a

parameter.
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6.0 SUMMARY

In this study, the performance of time-averaged estimators is considered
not only as a function of the observation window size of the data, but also in
terms of the pertinent correlation parameters of the underlying observation
processes. Specifically, the error variances and sample variances of both
correlation function and parameter estimators are considered for Gaussian as well
as non-Gaussian processes. In addition, multichannel processes are analyzed.
Analytic expressions are derived for the variance of the time-averaged complex
auto- and cross-correlation functions. The unique aspect of this development is
the determination of the functional dependence of these expressions in terms of
process correlation parameters. Specifically, the variance of the time-averaged
cross-correlation function is shown to depend upon the temporal correlation and
variance of each process, as well as (in the more general case of processes with
unconstrained Gaussian quadrature components [5]) the cross-correlation
coefficient. These expressions provide a performance measure which can be used
to specify the window size of the observation interval required to achieve a
specific value of this variance.
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APPENDIX A

In this Appendix, we derive the result expressed in eq.(29b) of the text.
From eqs(11)

E[O(n,I)] = Rii(I) (A.la)

and

E[O*(n-k,I)] = Rii(I) (A.lb)

so that from eq(2d)

COO(k,I) = ROO(k,I) - IRii(I)I 2 . (A.2)

And so, eq(3c) becomes
1 T [ll F1  ki

VBii(I'NT) = NTT ' Nk- [R,,(k,I) - IRii(I)12 ]. (A.3)
k=-(NT-II- 1) TI

We now consider,

ROO(k,I) E[O(n,I)0*(n - k,I)] (A.4a)

= E[xi(n)xi (n - I)xi (n - k)xi(n - I - k)]. (A.4b)

For processes with zero-mean, jointly stationary Gaussian quadrature
components xii(n) and xiQ(n), eq(A.4b) can be expressed as [see Appendix B]

RO(k,I) = lRii(I)I2 + IRii(k)12 + Fii(I,k) (A.5)

where

Fii(I,k) = E[xi(n)xi(n - I - k)]E[xi (n - I)xi (n - k)] (A.6a)
-R (I + k) -R(?Q0 + k){ R11(1- k) -R(QQ0 -k)}
+ { R9 1(I + k) + R!9(1 + k)} R91(1- k) + R!9(1- k)}

j { (I +k)- RQ(I + k)} R9((I- k) + R!9(I- k)}

+j {Ri(I -k)- RQQ(I -k)} { Ri(I+k)+ R!Q(I + k)}. (A.6b)

Using eq(A.5) in (A.3), we have
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NT-Ill-i

1.B( TN1)Ik [IRii(k)12 + Fii(T,k)]. (A.7)
T k=-(NTI-1-1) NT

By examination of eq(A.6b), we note that the imaginary terms in eq(A.7)

sum to zero. This can be seen by first noting that Fii(I,k) is real for k=O. We also

note that imaginary terms evaluated with negative values of k serve to cancel the
corresponding imaginary terms for positive values of k. And so, only the real
part of the function Fii(I,k) contributes to the VBii(I,NT) function. Therefore,

Bi(NT) N -II-• I Rii(k)12 + Re{Fii(i,k)}j] (A.8)
T k=-(NT-II_-I) T

which is eq(4) in the text.
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APPENDIX B
In this appendix, we derive eq(A.5) of Appendix A. Consider eq(A.4b)

expressed as

ROO(k,I) =E[xi(n)xi (n - I)xi (n - k)xi(n - I - k)]. (B. 1)

In the special case where the process xi(n) is Gaussian, then [6]

ROO(k,l) =E[xi(n)xi (n - I)]E[xi (n - k)xi(n - I - k)]

+ E[xi(n)xi (n - k)]E[xi (n - I)xi(n - I - k)]. (B.2)

However, we do not wish to constrain this discussion to this restrictive case.
Rather, we wish to consider the more general case of a process xi(n) with jointly

Gaussian quadrature components. We therefore consider

xi(n) = xil(n) + j xiQ(n) (B.3)

where the processes xil(n) and xiQ(n) are jointly Gaussian. Using eq(B.3) in

(B. 1), we obtain

ROO,(k) =E t [x11(n) + j xiQ(n)] fx~i(n-I) - j xiQ(n-I)]

* [xil(n-k) - j xiQ(n-k)][xij(n-I-k) + j xiQ(n-I-k)] }(B.4a)
-E t [xi 1(n)xi 1(n- I)+xi1Q(n)xiQ(n- I)+jxiQ(n)xi 1(n-I)-jx11(n)xiQ(n-1I)

= E~~1(nx 11 nij(n -kxjn--k)+xiQ(n--k)]+ExiQ(n-k)jxiQ(n-I)xiQ(n-kl~~--k)]

+E[ xi 1(n)xil(n- I)xiQ(n-k)xiQ(n- I-k)] + E[xiQ(n)xiQ(n-I)xiQ(n-k)xiQ(n-l-k)]

+ EI~xiQ(n)x 1i(n-I)x~i(n-k)xiQ(n-l-k)] + E[xiQ(n)xiQ(n-I)xiQ(n-k)xiQ(n-I-k)]
+ E[xiQ(n)xi1 (n-I)xiQ(n-k)xiQ(n-I-k)] + E[xil(n)xiQ(n-I)xiQ(n-k)xiQ(n-I-k)]

+jE[xi1(n)xi 1(n-I)xi 1(n-k)xiQ(n-I-k)] - jE[xi 1(n)xi 1(n-I)xiQ(n-k)xil(n-I-k)I

+jfi~~i~-~i~-~i~--) - jE[xiQ(n)xiQ(n-I)xiQ(n-k)xi 1(n-I-k)]

+jE[xiQ(n)xil(n-I)xi 1(n-k)xil(n-I-k)] + jE[xiQ(n)xil(n-I)xiQ(n-k)xiQ(n-I-k)]

-jE[x11(n)xiQ(n-I)xil(n-k)xi 1(n-I-k)I - j E[xi 1(n)xiQ(n-I)xiQ(n-k)xiQ(n-I-k)]

(B.4c)
For Gaussian, zero-mean quadrature components, eq(B.4c) can be

expressed as
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12 II 2 IL
ROO(k) = [Rh (1)] + [Rfi (k)] + Rfi (I + k)Rjj (k -I

+ R fi (I)Rfi (1) + [R~?'(k)I2R] + ( + k)R?' (k - 1)
II QQ1Q IQQ

+ Rj1 (I)Rjj (I) + [RO(k)] +R 1 I+k)j k-I

+ [R9Q(I)]2 + [R9Q(k)]2 + ?( +kR(k-I

QI IQ QI IQ QQI
RH (I)Rfi (1) - Ri(k)Rfi (k) - R11 ( + k)Rfill(k - 1)

+ [~()]2~RII(k)R9Q(k) + R!9(1 + k)R?'l(k - 1)

[R'1)] 2+R9Qk)II~k Q+ R9( IQ)R k-1

["u9JJ R9 1( 1 - (k)Rli (k) + R1 (1 (+ k)Rjj (k-I1)
IQI I QQQI

-j[ i (I)Rýj (I) + R11 I(k)Rjj (k) + Ri1 (I + k)RII(k - 1)

-j fR11(I)R91 (I) + Rjj(k)R!j (k) + R0l(1 + k)R!9(k - I)}

+jfR9,Q(I)R11 (I) + RQ1 (k)R1 i Q(k) + R11 (I + k)9,( -1
II QI Q I Q I Q) 1 1(

-jt (?()RH11)+Rh (k)Rii (k) + Ri ( k'R9n'k - 1
+j R~~I)RQ(I +1 Q11( +11 -

-j {R91( )R~u 1(I) + i'kRj(k) +RE 1 (I1+ k)Rii(k-I1)}

+j {R91j()R9j(I) + Rj1 (k)R!9(k) + R9j(I + k)R!9(k - 1)1

-j { O(I)RO(I) + RII~kR1k QI Y( k)R91(k - 1)1

-j {R!9~(I)R9(I) + R!()R9Q(k) +R!(+ )?k - 1)

(B.5)

where we note that the first two terms in each parenthesis for the imaginary
terms cancel. Since

HI QQ QI IQ
R(1) =[Rh--(() + RE (1)] + j [RH (1) - R11 (I)] (B.6)

then

IR(I)12 
-[RII(I)]2 + 1 2(I)R93Q(I) + [R9Q(I)]2

+[R9'(k)12 - 2Ru'(I)R!9(I) + (0 1i)]2 (B.7)

and similarly for IR(k)12 so that

ROO(k) =IRii(I)I2 + IRii(k)I2 + Fii(I9k) (B.8)
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where

Fii(I,k) = { R i1(I + k) - RQQ(I + k)} { Ri1i(I - k) - RQQ( - k)}

+ {RI(I + k)- RQQ(I + k){ R9(I(- k) + 0 (l- k)}

+ j{RI(I- k) - k) R9I(I + k) + R!(I + k)/ (B.9)

as noted in eq(A.6b) of Appendix A.
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